
SPHERES
Backscattering spectrometer

J. Wuttke

NL6a

shutter

velocity selector

focussing guide

chopper

vacuum chamber

detectors

beamstop

sample

monochromator

Doppler drive
analysers

door

Manual of the JCNS Laboratory Course Neutron Scattering
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1 Introduction

Neutron backscattering spectrometers are used to measure inelastic scattering with very high
energy resolution. What does this mean?

In inelastic scattering, scattering intensity is measured as function of the energy exchanged
between the scattered neutron and the sample. As in other areas of physics, a data set of the form
intensity-versus-energy is called a spectrum. An instrument that resolves inelastic scattering is
therefore called a spectrometer.

While elastic scattering experiments yield information about structure or texture of a sample,
inelastic scattering is used to investigate its dynamics. Specifically, inelastic neutron scattering
yields information about the thermal motion of atomic nuclei.

The most common instrument for inelastic neutron scattering is the triple-axis spectrometer. It
is routinely used to measure phonon and magnon dispersions, with energy exchanges of the
order of meV. In contrast, the high resolution of a backscattering spectrometer allows to resolve
very small energy shifts of the order of µeV. By the time-energy uncertainty relation, small
energy means long times. Hence, backscattering addresses relatively slow nuclear motion —
much slower than the lattice vibrations typically seen in triple-axis spectrometry.

What processes take place on the energy or time scale made accessible by neutron backscatter-
ing? For instance the following:

• hyperfine splitting of nuclear spin orientations in a magnetic field,
• rotations or hindered reorientations of molecules or molecular side groups,
• quantum tunneling,
• hydrogen diffusion in solids,
• relaxation (molecular rearrangements) in viscous liquids,
• innermolecular rearrangements in polymers.

During your lab course day, you will use the backscattering spectrometer SPHERES (SPec-
trometer for High Energy RESolution) to study one example of these applications.

2 Spectrometer Physics

2.1 Energy Selection by Backscattering

In crystal spectrometers, neutron energies are selected by Bragg reflection from crystals, ac-
cording to the Bragg condition

nλn = 2dhkl sin Θ (1)

where dhkl is the distance of lattice planes [hkl], and Θ is the glancing angle of reflection
from these planes. The index n indicates that along with a fundamental wavelength λ1, integer
fractions λn = λ1/n are transmitted as well. To suppress these unwanted higher orders, ex-
perimental setups include either a mechanical neutron velocity selector (Fig. 1), or a beryllium
filter.
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Fig. 1: Rotor of a mechanical neutron velocity selector. The blades are coated with neutron
absorbing material. In SPHERES, such a selector is used as a pre-monochromator that reduces
the incoming white spectrum to about ±6%. c© Astrium GmbH.

In practice, the parameters d and Θ on the right-hand side of Eq. (1) are not sharp: Imperfec-
tions of the crystal lead to a distribution of lattice constants, characterized by a width δd. And
similarly, imperfections of the neutron optics (inevitable because the incoming beam, the sam-
ple, and the detector all have finite size) lead to a distribution of reflection angles, characterized
by a width δΘ. By differentiating the Bragg equation (1), one obtains the relative width of the
wavelength distribution reflected by a crystal monochromator:

δλ

λ
=
δd

d
+ cot Θ δΘ. (2)

In usual crystal spectrometers, the second term is the dominant one. However, by choosing
Θ = 90◦, the prefactor cot Θ can be sent to zero. This is the fundamental idea of the backscatter-
ing spectrometer. If a monochromator crystal is used in backscattering geometry, with Θ ' 90◦,
then the reflected wavelength distribution is in first order insensitive to the geometric imperfec-
tion δΘ; it depends only on the crystal imperfection δd and on a second-order (δΘ)2 term.

The monochromator of SPHERES is made of silicon crystals in (111) orientation (Fig. 2).
The backscattered wavelength is λ = 2d111 = 6.27 Å, corresponding to a neutron energy of
2.08 meV. The crystals are cut from wafers produced by the semiconductor industry. They
are perfectly monocrystalline, so that their intrinsic resolution1 of δd/d ' 10−6 is actually
too good because it does not match the spectrometer’s second-order geometric imperfection
(δΘ)2 . 10−4. As a remedy, the crystals are glued to a spherical support so that the resulting
strain induces a lattice constant gradient of the order δd/d ' 10−4.

1 In perfect crystals, the intrinsic resolution δd/d is limited by primary extinction: Say, each crystalline layer has
a reflectivity of about 10−6. Then only about 106 layers contribute to the Bragg reflection. This limits δλ/λ to
about 10−6.
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Fig. 2: The monochromator of SPHERES consists of hexagonal Si(111) wafers of 750 µm
thickness, glued onto a spherical support made of carbon fiber.

Fig. 3: The analyzers of SPHERES are made of the same Si(111) as the monochromator. For
small scattering angles, they are shaped as rings; for large scattering angles, they are approxi-
mately rectangular sections of a sphere.

2.2 Spectrometer Layout

In a crystal spectrometer, a monochromator is used to send a neutron beam with a narrow
energy distribution Ei±δE onto the sample. After the sample, a second monochromator, called
analyzer, is used to select a narrow energy distributionEf±δE out of the scattered spectrum. In
SPHERES, we actually have a huge array of analyzers (Fig. 3), covering a solid angle of about
2.5, which is 20% of 4π. These analyzers send energy-selected neutrons towards 16 different
detectors, depending on the scattering angle ϑ.

Fig. 4 shows the complete layout of SPHERES. The incoming beam is pre-monochromatized
by a mechanical velocity selector. Then, it is transported by a focussing neutron guide into the
instrument housing where it hits a rotating chopper. The chopper rotor (Fig. 5) carries mosaic
crystals made of pyrolitic graphite on half of its circumference. When the incoming neutrons hit
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Fig. 4: Layout of the Jülich backscattering spectrometer SPHERES at FRM II.

Fig. 5: Schematic front view of the chopper rotor of SPHERES. The red bands indicate the
mosaic crystals that deflect the incident beam towards the monochromator.

these crystals, they undergo a Bragg reflection towards the monochromator.2 Otherwise, they
are transmitted towards a beamstop.

The backscattering monochromator selects a neutron band Ei ± δE as described above. Neu-
trons within this band are sent back towards the chopper. When they reach the chopper, the
rotor has turned by 60◦: the mosic crystals have moved out of the way; the neutrons coming
from the monochromator are transmitted towards the sample.

The sample scatters neutrons into 4π. About 20% of this is covered by analyzers. If a scattered
neutron hits an analyzer and fullfills the backscattering Bragg condition, it is sent back towards
the sample. It traverses the sample3 and reaches a detector. To discriminate energy-selected
neutrons from neutrons that are directly scattered from the sample into a detector, the time of
arrival is put in relation to the chopper phase.

2 As a side effect, the Bragg deflection by rotating mosaic crystals achieves a favorable phase-space transform
(PST): the incoming wavevector distribution is spread in angle, but compressed in modulus. This results in a
higher spectral flux in the acceptance range of the monochromator.
3 Of course not all neutrons are transmitted: some are lost, some are scattered into a wrong detector. This inac-
curacy is inevitable in neutron backscattering. We strive to keep it small by using rather thin samples with typical
transmissions of 90% to 95%.
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While the primary spectrometer (everything before the sample) is mainly in vacuum, the sec-
ondary spectrometer is not. To minimize neutron losses in the secondary spectrometer, the
entire instrument housing can be flooded with argon. For the labcourse, we preferentially re-
move the argon so that participants can accede the housing. However, since refilling takes at
least one full day, time constraints may prevent us from doing so. In this case, a video will be
shown to present the interior of the spectrometer.

2.3 Measuring Spectra

So far we have introduced a static arrangement with fixed energies Ei = Ef . Such an arrange-
ment is actually used to measure the fraction of elastic versus total scattering, called the Debye-
Waller factor for coherent scattering and the Lamb-Mössbauer factor for incoherent scattering.
More often, however, one wants to measure full spectra S(Q,ω). Therefore, one must find a
way to modify the energy transfer

~ω = Ei − Ef . (3)

This can be done using the Doppler effect: The monochromator is mounted on a linear drive
that performs a cyclic motion. In the monochromator’s rest frame, the backscattered energy is
always the value E0 = 2.08 meV given by the lattice constant of Si(111). Depending on the
monochromator’s velocity v, the value in the laboratory frame is

Ei(v) =
mn

2
(v0 + v)2 (4)

where v0 = 631 m/s is the neutron velocity at E0 = mn/2 v
2
0 . The Doppler drive of SPHERES

has a linear amplitude of ±75 mm and achieves a velocity amplitude of ±4.7 m/s, resulting in
an energy range

−30.7 µeV < ~ω < 30.9 µeV. (5)

This is called the dynamic range of the spectrometer.

When a scattered neutron is detected, its time of flight is traced back to the moment when it
has been backscattered by the monochromator. From the recorded trace of the linear drive, the
monochromator velocity at that moment is infered, ω is computed from (4) and (3), and the cor-
responding histogram channel is incremented. To determine S(Q,ω), one needs to normalize to
the time spent in channel ω. This normalization is routinely done by the instrument’s raw-data
reduction program SLAW.

2.4 Instrument Characteristics

The performance of a spectrometer can be characterized by its resolution function. To obtain
the resolution function, one measures the spectrum of a purely elastic scatterer. Fig. 6 shows the
result of a resolution measurement from a user experiment on SPHERES. Note the logarithmic
intensity scale.

Conventionally, the resolution of an instrument is characterized by the full width at half max-
imum (FWHM). For SPHERES, a typical value is 0.65 µeV. Note however that the FWHM is
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Fig. 6: Resolution function of SPHERES, measured on a user provided sample at a low temper-
ature where the scattering is purely elastic.

not the full story: the quality of an instrument also depends on the shape of the resolution func-
tions, especially of the deep wings. The resolution of SPHERES is slightly asymmetric. This is
related to the (δΘ)2 term in the wavelength spread of a backscattering analyzer: all deviations
from the perfect Θ = 90◦ geometry lead to the transmission of longer wavelengths, never of
shorter ones.

Another important figure of merit is the signal-to-noise ratio (SNR). It depends strongly on the
ratio of scattering to absorption cross sections and on the thickness and geometry of the sample.
With argon filling, the best value obtained in user experiments has been 1700:1; without argon,
1200:1. On the other hand, for strongly absorbing samples it is sometimes less than 100:1.

3 Applications

In the following, two different applications of neutron backscattering are explained: hyperfine
splitting in a magnetic material, and methyl group tunneling.

3.1 Hyperfine Splitting

The measurement of hyperfine splitting has been historically the first application of neutron
backscattering,4 and to this day, it is the conceptually simplest one.

Since the neutron has spin S = 1/2, its magnetic quantum number can take the values Sz =
±1/2. In a scattering event, this quantum number can change. In more pictorial words: when a

4 A. Heidemann, Z. Phys. 238, 208 (1970).
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neutron is scattered, it may or may not undergo a spin flip.

As angular momentum is conserved, a change of Sz must be accompanied by an opposite
change of the magnetic quantum number Iz of the nucleus by which the neutron is scattered,
∆Iz = −∆Sz. Therefore, spin-flip scattering is only possible if the sample contains nuclei with
nonzero spin I .

Nuclei with nonzero spin quantum number I possess a magnetic moment

µ = IgµN (6)

with the nuclear magneton

µN =
e~

2mp

= 3.153 · 10−8 eV/T. (7)

The g factor is different for each nucleus.5

A local magnetic field B leads to a splitting of energy levels,

E = IzgµNB, (8)

called hyperfine splitting. Consequently spin-flip scattering is accompanied by an energy ex-
change ∆E = ±gµNB. By measuring the neutron energy gain or loss±∆E, one can accurately
determine the local field B in ferromagnetic or antiferromagnetic materials.

3.2 Molecular Rotation and Quantum Tunneling

Rotational motion of molecules or molecular side groups is one of the most important applica-
tions of neutron backscattering. Here, we specialize on the rotation of methyl (CH3) groups.
We consider these groups as stiff, with fixed6 CH bond length 1.097 Å and HCH angle 106.5.◦

The only degree of freedom is then a rotation around the RC bond that connects the methyl
group to the remainder R of the molecule. This RC bond coincides with the symmetry axis of
the CH3 group. The rotational motion can therefore be described by a wave function ψ that
depends on one single coordinate, the rotation angle φ.

The Schrdinger equation is {
B
∂2

∂φ2
− V (φ) + E

}
ψ(φ) = 0. (9)

For free rotation (V = 0), solutions that possess the requested periodicity are sine and cosine
functions of argument Jφ, with integer J . Accordingly, the energy levels are E = BJ2.

Given the value B = 670 µeV, it is obvious that free rotor excitations occur only far outside
the dynamic range of neutron backscattering. Conversely, if we observe an inelastic signal
from methyl groups on a backscattering spectrometer, then we must conclude that V 6= 0: the

5 Tabulation: http://ie.lbl.gov/toipdf/mometbl.pdf.
6 Ignoring the variations of empirical values, which are of the order of ±0.004 Å and ±1.5◦.
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methyl group rotation is hindered by a rotational potential. This potential can be caused by the
remainder R of the molecule as well as by neighbouring molecules.

Due to the symmetry of the CH3 group, the Fourier expansion of V (φ) contains only sine and
cosine functions with argument 3mφ, with integer m. In most applications, it is sufficient to
retain only one term,

V (φ)
.
= V3 cos(3φ). (10)

The strength of the potential can then be expressed by the dimensionless number V3/B. In the
following we specialize to the case of a strong potential, V3/B � 10, which is by far the most
frequent one.

In a strong potential of form (10), the CH3 group has three preferential orientations, separated
by potential walls. The motion of the CH3 group consists mainly of small excursions from the
preferred orientations, called librations. Essentially, they are harmonic vibrations.

At low temperatures, almost exclusively the vibrational ground state is occupied. Yet reorien-
tational motion beyond librations is possible by means of quantum mechanical tunneling: the
wave functions of the three localised pocket states ψm (m = 1, 2, 3) have nonzero overlap.
Therefore, the ground state is a linear combination of pocket states.7 Periodicity and threefold
symmetry allow three such combinations: a plain additive one

ψ1 + ψ2 + ψ3, (11)

and two superpositions with phase rotations

ψ1 + e±i2π/3ψ2 + e±i4π/3ψ3. (12)

In the language of group theory, state (11) has symmetry A, the degenerate states (12) are
labelled Ea, Eb. It is found that A is the ground state. The tunneling splitting ~ωt between
the states A and E is determined by the overlap integral 〈ψm|V |ψn〉 (m 6= n). It depends
exponentially on the height of the potential wall. Provided it falls into the dynamic range of
neutron scattering, it leads to a pair of inelastic lines at at ±~ωt.

With rising temperatures, the occupancy of excited vibrational levels increase. This facilitates
transitions between A and E sublevels and results in a decrease of ~ωt and a broadening of the
inelastic lines.

Upon further temperature increase, thermal motion of neighbouring molecules causes so strong
potential fluctuations that the picture of quantum tunneling is no longer applicable. Instead, the
motion between different pocket states can be described as stochastic jump diffusion.

Let pm(t) be the probability of being in pocket state m (m = 1, 2, 3). Assume that jumps
between the three main orientations occur with a constant rate τ−1. Then, the pm obye rate
equations

d

dt
pm(t) =

1

τ

{
−pm +

∑
n6=m

1

2
pn

}
. (13)

7 This is an extremely simplified outline of the theory. In a serious treatment, to get all symmetry requirements
right, one must also take into account the nuclear spins of the H atoms. See W. Press, Single-Particle Rotations in
Molecular Crystals, Springer: Berlin 1981.
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The stationary equilibrium solution is just pm = 1/3 for all m. When perturbed, the system
relaxes into equilibrium with a time dependence of exp(−t/τ̃). Explicit solution of the linear
differential equation system (13) yields τ̃ = 2τ/3.

According to a fundamental theorem of statistical mechanics (the fluctation dissipation theo-
rem), the relaxation by which a slightly perturbed system returns into equilibrium has the same
time dependence as the pair correlation function in equilibrium. Therefore, we can employ the
solution of (13) to write down the self-correlation function of the protons that constitute our
methyl group. Fourier transform yields then the incoherent scattering function

S(q, ω) = a(q)δ(ω) + b(q)
Γ

ω2 + Γ2
. (14)

The first term describes elastic scattering. The second term, the Fourier transform of the expo-
nential exp(−t/τ̃), is a Lorentzian with linewidth Γ = τ̃−1; such broadening of the elastic line
is often called quasielastic.

4 Preparatory Exercises

1. Relate the relative wavelength spread δλ/λ to the relative energy spread δE/E.

2. In SPHERES, useable detectors are located at scattering angles 2θ ranging from 12.5◦

to 134◦. Calculate the corresponding wavenumbers in Å−1. Recommendation: use the
following constants in atomic units: ~c = 1973 eVÅ and mnc

2 = 940 MeV.

3. Convert dynamic range and resolution of SPHERES into GHz. To make contact with
optical spectroscopy, you might also wish to convert into cm−1.

4. Empirically, it is found that the centre of the resolution function can be fitted by a Gaus-
sian a exp(−E2/2/σ2). Derive an expression that relates the Gaussian standard deviation
σ to the FWHM.

5. Note that the above mentioned fit applies only to the very centre of the resolution function.
How does a Gaussian look like on the lin-log representation of Fig. 6? And a Lorentzian?

6. In SPHERES, the distance sample-analyzer is 2 m. Calculate the time neutrons need for
a round trip sample-analyzer-sample, and deduce the rotation frequency of the chopper.

7. Assume that the monochromator motion is perfectly sinusoidal. Sketch how the measur-
ing time per energy channel varies with ~ω.

8. Draw a sketch of the expected backscattering spectrum S(q, ω) of a ferromagnetic mate-
rial with I 6= 0.

9. Assume a hyperfine splitting of ∆E = 2 µeV. To which temperature do you have to
cool the sample to observe a 10% difference between the probabilities of energy gain and
energy loss scattering?

10. How do you expect ∆E to evolve when the sample is heated towards the Curie or Néel
temperature?
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11. Calculate the moment of inertia, I =
∑
mr2⊥, of a methyl group. Verify that the rota-

tional constant B = ~2/(2I) has a value of about 670 µeV.

12. Expand V (φ) around a potential minimum, and compare the resulting Schrödinger equa-
tion with that of a harmonic oscillator. Show that the splitting of oscillator levels is of the
order of meV.

13. Draw a coordinate system energy-versus-angle. Sketch V (φ), the harmonic approxima-
tion, the ground state’s ψ(φ), and the lowest oscillator energy levels. What does that
imply for the validity of the oscillator approximation?

14. Sketch the expected spectra for different temperatures.

5 Experiment Procedure

5.1 The experiment itself

After an initial discussion, methyl group tunneling will be studied. For a given chemical com-
position, the group computes the sample thickness that yields 90% transmission. Depending on
the group’s interest, a sample is prepared, or a standard sample is used. The tutor shows how to
insert the sample in the instrument’s cryostat. Using the instrument’s graphical user interface,
starting a measurement is rather trivial. Log entries are written to the instrument log wiki.

5.2 Raw data reduction

The program SLAW is used to convert raw neutron counts into S(Q,ω). It is parametrized by
a script, called Slawfile. The tutor provides a sample script, which is then modified to
convert the results of the current experiment.

SLAW can save S(Q,ω) in a variety of output formats. Most relevant are plain tabular formats
recttab and spectab, and a self-documenting format y08 required by our standard data-
analysis software FRIDA.

5.3 Data evaluation

In a first approach, labcourse participants should analyse plain tabular data using whatever all-
purpose data-analysis software they are used to.

1. Plot a representative selection (choose a few Q) of measured spectra.

2. Determine the FWHM of the elastic line, and of the inelastic lines if there are any.

3. Try to fit these lines with a Gaussian, with a Lorentzian, with a squared Lorentzian.

4. Summarize the temperature dependence of the spectra.
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For a more quantitative analysis, it is necessary to convolute a theoretical model with a measured
resolution function. This can be done with the data-analysis package FRIDA. For a tutorial, refer
to the SPHERES wiki.8

8 Follow the link at http://www.jcns.info/jcns_spheres.
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