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1. Crystals 

At the end of the 19th century the micro structure of solids was still under debate. Max 
von Laue had the idea to clarify this issue by using X-rays which were discovered some 20 
years before by Wilhelm Conrad Röntgen. For this purpose, von Laue worked out a theory for 
X-ray diffraction at three-dimensional crystals. With the observation of diffraction patterns 
by irradiating solids with X-rays, his coworkers Walther Friedrich and Paul Knipping verified 
both the periodic space structure of most solids and the wave character of X-rays. 

In this laboratory exercise we will address the structural characterization of solids by 
means of high-resolution X-ray diffraction (HRXRD). In general, this technique is not used to 
determine the crystal structure, but to investigate deviations from an ideal crystal which can 
be induced i.e. by defects, mosaicity or strain. 

We first give an overview on the basic concepts of how to describe an ideal crystal. 
Subsequently, we treat irregularities and defects in real crystals. We then give an introduction 
in the kinematic theory of X-ray diffraction. Finally, the experimental setup is presented and 
the characterization of real crystals by HRXRD is discussed. 

 

Figure 1: Irradiation of a thin slab of a crystal with “white” X-rays produced a distinct 
diffraction pattern. Picture taken at the U-Bahn station Garching-Forschungszentrum. 

 

1.1. Ideal Crystals 

1.1.1. Definition 

An ideal crystal is an infinite, periodic array of a structural element. The structural 
element which consists of an atom or a group of (identical or different) atoms is called basis. 
A crystal can be built up by repeatedly placing the basis at well-defined lattice sites which 
constitute the so-called space lattice. The arrangement of the atoms looks identical viewed 
from every point of the space lattice. The lattice points can be reached by a translation 

 𝒓 = 𝑛ଵ𝒂𝟏 + 𝑛ଶ𝒂𝟐 + 𝑛ଷ𝒂𝟑 (1) 



 4

where all ni are integer. The lattice vectors ai have to be linearly independent. They span the 
unit cell, whose volume 𝑉௨௖  is given by the scalar triple product 

 𝑉௨௖ = 𝒂𝟏 ∙ (𝒂𝟐 × 𝒂𝟑) (2) 

The unit cell with the smallest volume possible is called primitive unit cell, and it is 
spanned by the primitive lattice vectors. The number of atoms that its associated basis 
contains is as small as possible. For a given basis there is an infinite number of possible choices 
for the unit cell (Figure 2). Yet the volume of all possible unit cells is always the same. In order 
to take into account other symmetries of the crystal than the translational symmetry, like 
rotational or mirror symmetry, it is often reasonable to choose a non-primitive unit cell, or 
so-called conventional unit cell. However, this results in a more complex structure of the basis 
of the crystal. 

 

Figure 2: (a) Space lattice with two different choices of unit cells (b) basis (c) resulting two-
dimensional crystal. 

 

1.1.2. Miller Indices 

Any plane containing lattice points is called a lattice plane. In an ideal crystal there is 
always an infinite number of parallel lattice planes. As we will see later, it is convenient to 
label a set of parallel lattice planes according to the following algorithm: 

1. Determine the intersection points a, b and c of any of the lattice planes with the 
coordinate axes in units of the lattice constants, i.e. in multiples of the lengths of the lattice 
vector ai. 

2. Take the reciprocal values ℎᇱ =
ଵ

௔
 , 𝑘′ =

ଵ

௕
 , and 𝑙ᇱ =

ଵ

௖
 . 

3. Multiply these values with the smallest number m possible so that ℎ = 𝑚 ∙ ℎ′, 𝑘 = 𝑚 ∙

𝑘′, 𝑙 = 𝑚 ∙ 𝑙ᇱ are integer.  

The thus obtained triple (ℎ𝑘𝑙) is known as Miller indices. For example, if one lattice 
plane intersects the axes at a = –2, b = 1 and c = 4, the set of parallel planes it belongs to is 
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labeled by the Miller indices (2ത41). Negative values are marked with a bar over the index. If 
the lattice plane is parallel to an axis, the intersection point is ∞  and therefore the 
corresponding index is equal to 0. To indicate that the triple (ℎ𝑘𝑙) labels all parallel lattice 
planes, it is enclosed in parentheses. To designate crystallographically equivalent planes, the 
Miller indices are enclosed in curly braces {ℎ𝑘𝑙}. For instance, lattice planes limiting the unit 
cell in a cubic lattice, i.e. the (100), (010), (001), (1ത00), (01ത0) and (001ത) planes, can be 
subsumed by writing {100}. Similarly, directions in the lattice are indicated by a triple of 
integers [𝑢𝑣𝑤] enclosed in square brackets. u, v and w denote the smallest possible integer 
components of a vector 𝑹 = 𝑢𝒂 + 𝑣𝒃 + 𝑤𝒄 pointing along the designated direction. 

 

Figure 3: Hexagonal unit cell of the Wurtzite lattice. Its primitive unit cell is limited by the 
lattice vector a1, a2, and c as well as the dotted lines and it contains four atoms. 

In this laboratory exercise we will investigate thin zinc oxide (ZnO) and zinc magnesium 
oxide (ZnMgO) films which have crystallized in a hexagonal Wurtzite lattice. The Zn and O 
atoms form two interpenetrating, hexagonal close-packed sublattices which are displaced 
along the c-direction of their hexagonal unit cell (Figure 3). In this structure the Zn (O) atoms 
are tetrahedrally coordinated which means that they are situated at the center of a 
tetrahedron which is formed by O (Zn) atoms. The atoms are usually grouped in bilayers, 
which consist of two adjacent (00.1) lattice planes (the signification of the dot in this notation 
is explained below). The staking order of the bilayers is ABABAB. . . (Figure 4). 

 

Figure 4: Side-view of a Wurtzite crystal showing that its bilayers are stacked in the sequence 
ABABAB. 
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In Figure 3 the hexagonal unit cell of the Wurtzite lattice is shown. It is spanned by the 
lattice vectors a1 and a2 lying in the basal plane as well as c being perpendicular hereon. The 
basis of the Wurtzite lattice consists of four atoms. By using the above described methods to 
label directions and planes, in hexagonal crystals crystallographically equivalent directions 
and planes can be designated by a different type of triple (ℎ𝑘𝑙) or[ℎ𝑘𝑙]. For example, the 
crystallographically equivalent planes limiting the unit cell parallel to the c-direction can be 
labeled (11ത. 0) and (10.0) (Figure 5(a)). Therefore, it is common to use a coordinate system 
with four axes and a quadruple of integers for indexing. This takes into account that there are 
three equivalent symmetry axes a1, a2 and a3 in the plane perpendicular to the principal axis 
along the c-direction. The indices (ℎ𝑘𝑖𝑙) are then determined analogously to the already 
presented algorithm. Thereby the relation 

 𝑖 =  −(ℎ + 𝑘) (3) 

is valid, because a1, a2 and a3 are not linearly independent as a3 = – (a1 + a2). For designating 
directions, one has to assure to pick that linear combination of lattice vectors that satisfies 
equation (3). For instance, the direction along the –a2 vector is not labeled [01ത00] but [12ത10] 
(Figure 5(b)). If one chooses to use only three indices in a hexagonal lattice, one places usually 
a dot, that shall represent the omitted fourth index, between the second and third index 
[ℎ𝑘. 𝑙]. Then, equation (3) does not to be obeyed. Using four indices for indexing has the 
advantage that crystallographically equivalent directions and planes are obtained by a simple 
cyclic permutation of the indices. 

 

Figure 5: Indexing of directions and planes in a hexagonal lattice. 

 

1.2. Real Crystals 

In real crystals the requirement to minimize the free energy 𝐹 = 𝑈 − 𝑇𝑆  induces 
deviations from the ideal crystal structure. Already small concentrations of defects can 
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drastically influence the properties of crystals. For example, the electrical conductivity of a 
semiconductor can be significantly increased by the incorporation of a small amount of 
extrinsic impurities, which is typically known as doping. It is therefore important to investigate 
the nature and density of defects. For this purpose, HRXRD is a suitable method that does not 
damage the samples, and no complex sample preparation is required. In this laboratory 
exercise, we investigate heteroepitaxially grown thin films. This means that the underlying 
substrate and the epitaxial layer are different materials with typically different lattice 
constants, and perhaps even of different crystal symmetry. To quantify the difference in 
lattice constant the so-called lattice mismatch ∆𝑎/𝑎 is defined as follows 

 
∆𝑎

𝑎
=

𝑎௦௨௕௦௧௥௔௧௘ − 𝑎௙௜௟௠
௥௘௟௔௫

𝑎௦௨௕௦௧௥௔௧௘
 (4) 

where 𝑎௦௨௕௦௧௥௔௧௘ and 𝑎௙௜௟௠
௥௘௟௔௫ refer to the respective relaxed lattice constants (see Figure 6) in 

the plane parallel to the interface. For a small lattice mismatch, the epitaxial film can grow 
pseudomorphical, i.e. it adapts the in-plane lattice constant of the substrate thereby 
accumulating biaxial strain (Figure 6(b)). 

 

Figure 6: (a) Relaxes unit cells of film and substrate. Schematic representation of (b) a 
pseudomorphical, (c) a partially relaxed, and (d) a fully relaxed heteroepitaxial film. 

When the film thickness exceeds a certain critical value, the built-up strain energy is 
released by the formation of one-dimensional defects, called dislocations, perpendicular to 
the interface. In the vicinity of a dislocation the crystal lattice is distorted and strain is 
accumulated, that decays rather slowly as one moves away from the dislocation. By moving 
along a 360°-loop around a dislocation, one does not arrive at one's starting point. The 
difference between starting and end points defines the Burgers vector b. In general, two types 
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of dislocations can be distinguished, namely screw- and edge-type dislocations (Figure 7). For 
screw-type dislocations the Burgers vector b is oriented along the dislocation, whereas for 
edge-type dislocation it is perpendicular. Dislocations have the tendency to arrange 
themselves in the most stable configuration possible. Therefore, for example edge-type 
dislocations prefer to group themselves together, as shown in Figure 8, in order to minimize 
the strain energy. Such an agglomeration of dislocations is known as grain boundary. This 
type of two-dimensional defect can be seen as a boundary between two monocrystalline 
regions of a solid, called crystallites, which are twisted by an angle  with respect to one 
another. In a similar way as edge-type dislocations result in a twist, screw-type dislocations 
can give rise to a tilt of the crystallites. 

 

Figure 7: (a) Screw-type dislocation for which the Burgers vector b is parallel to the dislocation. 
(b) Edge-type dislocation with Burgers vector b perpendicular to the dislocation. 

 

 

Figure 8: Grain boundary. 
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In this laboratory exercise we investigate ZnO samples heteroepitaxially grown on c-
plane sapphire substrates. Sapphire can be seen to have a quasi-hexagonal lattice, that is to 
say the O-sublattice exhibits six-fold symmetry whereas the Al-sublattice has only a three-
fold symmetry axis. The term c-plane means that the sapphire is cut parallel to its (0001) plane. 
The growth direction of ZnO on this substrate surface is the [0001] direction. In order to 
minimize the lattice mismatch, the ZnO lattice is rotated by 30° with respect to the sapphire 
substrate and thus forms a coincidence lattice therewith. Figure 9 illustrates the epitaxial 
relationship between the ZnO film and the sapphire substrate. But even then, the lattice 
mismatch ∆𝑎/𝑎 = -18.4% is quite substantial. As a consequence, the critical layer thickness 
for pseudomorphical growth is less than one monolayer of ZnO. Therefore, the formation of 
dislocations, through which strain is released, starts with the very beginning of the film 
growth. This results in a columnar growth mode (Figure 10) with most of the dislocations 
perpendicular to the interface whereas there are few dislocations parallel to the interfacial 
plane. Hence, the vertical crystallite size is only limited by the layer thickness. The individual 
columnar crystallites are twisted and tilted with respect to one another. As we will see later, 
this causes a broadening of specific X-ray reflexes. 

 

Figure 9: Formation of a coincidence lattice of the ZnO film and the sapphire substrate by a 
30° rotation. For a clearer view, only the sapphire O-sublattice and the ZnO Zn-sublattice is 
depicted. The arrows indicate the distances which are relevant for the calculation of lattice 
mismatch. 
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Figure 10: (a) Schematic side view of an epitaxial thin film showing the tilt of the crystallites. 
(b) Top view illustrating the twist. 

However, the lattice mismatch between ZnO and Zn1-xMgxO layers is relatively small 
which allows pseudomorphical growth to take place. But the uppermost layer can also be 
partially relaxed or completely relaxed, depending on the layer thickness and the magnesium 
content x in the Zn1-xMgxO layer. For a quantitative analysis, the degree of relaxation r  

 𝑟 =
𝑎௙௜௟௠ − 𝑎௦௨௕௦௧௥௔௧௘

𝑎௙௜௟௠
௥௘௟௔௫ − 𝑎௦௨௕௦௧௥௔௧௘

 (5) 

is defined, where 𝑎௙௜௟௠  denotes the actually measured lattice constant of a thin film and 

𝑎௙௜௟௠
௥௘௟௔௫ the totally relaxed lattice constant. Thus, r is equal to 1 for fully relaxed films and equal 

to 0 for pseudomorphical growth. 
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2. Theory of X-ray Diffraction 

In this section, we discuss the theory of X-ray diffraction. Though the dynamic theory 
in which the Maxwell equations are solved for a medium with a periodic and complex 
dielectric function is more accurate, it is perfectly sufficient to treat diffraction at real crystals 
with a mosaic structure within the less complex kinematic theory. The dynamic theory has to 
be only used for diffraction at ideal crystals. Since all the samples investigated in this 
laboratory exercise exhibit a mosaic structure, we constrain the discussion to the kinematic 
theory of X-ray diffraction. 

 

Figure 11: Schematic representation of the scattering process. D marks the position of the 
detector for which R’ >> r is valid. 

 

2.1. Kinetic Theory of X-ray Diffraction 

The interaction between an electromagnetic wave and an atom can be described with 
an oscillator model. For large distances R between X-ray source and sample, the incident wave 
can be approximated by a plane wave whose electric field Ein is given by (Figure 11): 

 𝐸௜௡ = 𝐸଴ ∙ 𝑒௜(𝒌𝒊𝒏∙(𝑹ା𝒓)ିఠబ௧) (6) 

It induces harmonic oscillations of the shell electrons of an atom at point P and thus 
the emission of a spherical electromagnetic wave (Hertz dipole). This process is known as 
Thomson scattering. Given the fact that this is an elastic process, the scattered wave exhibits 
the same frequency and the same norm of the wave vector as the incident wave 

 |𝒌𝒊𝒏| = |𝒌𝒐𝒖𝒕| = |𝒌| =
2𝜋

𝜆
 (7) 

where  denotes the X-ray wavelength. The amplitude of the scattered wave reads 

 𝐸௢௨௧ = 𝑓𝐸௜௡

𝑒௜𝒌𝒐𝒖𝒕∙൫𝑹ᇲି𝒓൯

|𝑹ᇱ − 𝒓|
 (8) 
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Herein f denotes the scattering amplitude which depends on the type of atom and the 
frequency of the incident wave. At large distances from the scattering atom (R’ >> r), the 
scattered wave can be approximated by a plane wave, and thus by inserting equation (6) into 
equation (8): 

 𝐸௢௨௧ = 𝑓𝐸଴ ∙ 𝑒௜(𝒌𝒊𝒏∙(𝑹ା𝒓)ିఠబ௧)𝑒௜𝒌𝒐𝒖𝒕∙𝑹ᇲ 𝑒ି௜𝒌𝒐𝒖𝒕∙𝒓

𝑅ᇱ
 

          = 𝑓
𝐸଴

ᇱ

𝑅′
𝑒௜(𝒌𝒊𝒏ି𝒌𝒐𝒖𝒕)∙𝒓 

(9) 

in which 𝐸଴
ᇱ = 𝐸଴ ∙ 𝑒௜൫𝒌𝒊𝒏∙𝑹ା𝒌𝒐𝒖𝒕∙𝑹ᇲ൯𝑒ିఠబ௧. 

The deduced expression (9) is valid for the scattering of a single atom. We now address 
the scattering of X-rays by an entire crystal. It is reasonable for the interaction between X-
rays and solids to neglect multiple scatter processes (Born approximation). As a consequence, 
the scattered amplitude is proportional to the electron density n(r) of the crystal. Within the 
Frauenhofer approximation (R’ >> r), all wave vectors kout are parallel irrespective of the 
position P of the scattering atom. The scattered amplitude is then obtained by integrating 
over the whole crystal volume V: 

 𝐸௢௨௧ ∝
𝐸଴

ᇱ

𝑅ᇱ
න 𝑛(𝒓)𝑒௜(𝒌𝒊𝒏ି𝒌𝒐𝒖𝒕)∙𝒓𝑑𝑉

 

௏

=
𝐸଴

ᇱ

𝑅ᇱ
න 𝑛(𝒓)𝑒ି௜𝒒∙𝒓𝑑𝑉

 

௏

 (10) 

In which we have defined the scattering vector q 

 𝒒 = 𝒌𝒐𝒖𝒕 − 𝒌𝒊𝒏 (11) 

Equation (10) shows that the amplitude of the scattered wave is proportional to the 
Fourier transformation of the electron density. By performing diffraction experiment, one 
cannot detect the amplitude but only the intensity 𝐼 of the scattered wave, thus losing its 
phase information: 

 𝐼 ∝
|𝐸଴|ଶ

𝑅ᇱଶ อන 𝑛(𝒓)𝑒ି௜𝒒∙𝒓𝑑𝑉

 

௏

อ

ଶ

 (12) 

Therefore, the electron density cannot be simply obtained by an inverse Fourier 
transformation of the obtained diffraction pattern. Nevertheless, Equation (12) states the 
important result that the observed intensity is proportional to the modulus of the Fourier 
transformation of the scattering crystal lattice.  

2.2. Reciprocal Lattice 

Until now we made no use of the periodicity of the crystal. Yet, for a crystal the 
electron density n(r) has to be invariant under translations which constitute linear 
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combinations of lattice vectors 𝑻 = 𝑢𝒂𝟏 + 𝑣𝒂𝟐 + 𝑤𝒂𝟑  with u, v, w integer and ai the 
fundamental lattice vectors. Hence, 

 𝑛(𝒓 + 𝑻) = 𝑛(𝒓) (13) 

Periodic functions that satisfy Equation (13) can be expanded into a Fourier series. In 
one dimension the Fourier expansion reads 

 𝑛(𝑥) = ෍ 𝑛௠𝑒௜(ଶగ௠/௔)௫

௠

 (14) 

The validity of equation (13) for a displacement of an arbitrary lattice vector 𝑇௨ = 𝑢𝒂 
can be easily verified. Likewise, in three dimensions the Fourier expansion is defined as 

 𝑛(𝒓) = ෍ 𝑛𝑮𝑒௜𝑮∙𝒓

𝑮

 (15) 

In order to satisfy Equation (13) 

 𝑒௜𝑮∙𝑻 = 1     ∀ 𝑻 (16) 

This involves  

 𝑮 ∙ 𝑻 = 2𝜋𝑛     ∀ 𝑻     ∧     𝑛  integer (17) 

A suitable basis to construct vectors  

 𝑮 = ℎ𝒃𝟏 + 𝑘𝒃𝟐 + 𝑙𝒃𝟑       h, k, l  integers (18) 

that fulfills Equation (17) is given by: 

 𝒃𝟏 = 2𝜋
𝒂𝟐 × 𝒂𝟑

𝒂𝟏(𝒂𝟐 × 𝒂𝟑)
    𝒃𝟐 = 2𝜋

𝒂𝟑 × 𝒂𝟏

𝒂𝟐(𝒂𝟑 × 𝒂𝟏)
    𝒃𝟑 = 2𝜋

𝒂𝟏 × 𝒂𝟐

𝒂𝟑(𝒂𝟏 × 𝒂𝟐)
 (19) 

The vectors bi and their linear combinations are referred to as reciprocal lattice vectors, 
because their dimension is m-1 and their length is inversely proportional to the length of the 
corresponding real lattice vectors. They span the so-called reciprocal lattice. It follows, that 
with every crystal structure there are two lattices associated, namely its space lattice in real 
space and its reciprocal lattice in Fourier space. The reciprocal lattice exhibits the same 
symmetries as the real crystal lattice. As both lattices are directly linked with each other via 
Equation (19), by determining properties of the reciprocal lattice one easily obtains the same 
properties of the space lattice. Also, by rotating or translating the space lattice the reciprocal 
lattice is also rotated or translated. One could readily verify that: 

 𝒂𝒊 ∙ 𝒃𝒋 = 2𝜋𝛿௜௝  (20) 

and consequently, all reciprocal lattice vectors constructed according to Equation (18) satisfy 
Equation (17). 
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There is an important relation between the lattice planes of the crystal lattice and the 
reciprocal lattice vectors [1]: The reciprocal lattice vector 𝑮𝒉𝒌𝒍 = ℎ𝒃𝟏 + 𝑘𝒃𝟐 + 𝑙𝒃𝟑  is 
perpendicular to the lattice planes with Miller indices (ℎ𝑘𝑙) and the distance dhkl between 
two such adjacent planes is given by 

 𝑑௛௞௟ =
2𝜋

|𝑮𝒉𝒌𝒍|
 (21) 

For a hexagonal lattice with lattice constant a and c this yields:  

 
𝑑௛௞௟ =

𝑎

ට4
3

(ℎଶ + 𝑘ଶ + ℎ𝑘) + ቀ
𝑎
𝑐

ቁ
ଶ

𝑙ଶ

 
(22) 

2.3. X-ray Diffraction at Periodic Structures 

We now insert the Fourier expansion of the electron density, according to Equation 
(15), into Equation (12): 

 𝐼 ∝
|𝐸଴|ଶ

𝑅ᇱଶ อ෍ 𝑛𝑮 න 𝑒௜(𝑮ି𝒒)∙𝒓𝑑𝑉

 

௏𝑮

อ

ଶ

 (23) 

For a macroscopic crystal, whose side lengths lx, ly, and lz are typically 107 – 108 times the 
lattice constants, the integral in equation (23) shows a -like behavior. 

 

න 𝑒௜(𝑮ି𝒒)∙𝒓𝑑𝑉

 

௏

=

⎝

⎜
⎛

න 𝑒௜(ீభି௤భ)∙௫𝑑𝑥

௟ೣ
ଶ

ି௟ೣ
ଶ ⎠

⎟
⎞

∙

⎝

⎜
⎛

න 𝑒௜(ீమି௤మ)∙௬𝑑𝑦

௟೤

ଶ

ି௟೤

ଶ ⎠

⎟
⎞

∙

⎝

⎜
⎛

න 𝑒௜(ீయି௤య)∙௭𝑑𝑧

௟೥
ଶ

ି௟೥
ଶ ⎠

⎟
⎞

 

=

⎝

⎜
⎛

sin ቆ𝑙௫ ∙
1
2

(𝐺ଵ − 𝑞ଵ)ቇ

1
2

(𝐺ଵ − 𝑞ଵ)

⎠

⎟
⎞

∙

⎝

⎜
⎛

sin ቆ𝑙௬ ∙
1
2

(𝐺ଶ − 𝑞ଶ)ቇ

1
2

(𝐺ଶ − 𝑞ଶ)

⎠

⎟
⎞

∙

⎝

⎜
⎛

sin ቆ𝑙௭ ∙
1
2

(𝐺ଷ − 𝑞ଷ)ቇ

1
2

(𝐺ଷ − 𝑞ଷ)

⎠

⎟
⎞

 

= ൜
𝑙௫𝑙௬𝑙௭ = 𝑉     for 𝐪 = 𝐆

≈ 0                 otherwise
ൠ          for large 𝑙௫ , 𝑙௬, 𝑙௭ 

(24) 

 

This can be interpreted the way that only if the Laue condition 

 𝒒 = 𝑮 (25) 

is fulfilled, which states that only if the scattering vector is equal to a reciprocal lattice vector, 
an X-ray reflex can be observed. Because then the scattered X-rays interfere constructively 
along the direction of kout, that is to say the phase factors of the waves scattered at different 
lattice points of the crystal differ only by a factor 𝑒ଶగ௡ (n integer) along kout. If the phase factor 
has a slightly different value than 𝑒ଶగ௡, the contribution from the all lattice points average to 
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zero very effectively due to the high number of scatterers. Hence, for constructive 
interference relation Equation (23) yields for the intensity of the observed X-ray reflex: 

 𝐼 ∝
|𝐸଴|ଶ

𝑅ᇱଶ ቚ𝑛𝑮𝒒
ቚ
ଶ

𝑉ଶ (26) 

Equation (26) expresses the important result that for coherent X-ray scattering the scattered 
intensity is proportional to V2 and thus to N2, where N denotes the number of lattice points. 

2.4. Bragg Equation 

We now try to give an intuitively clearer interpretation of the diffraction process. By 
inserting the diffraction condition (25) into Equation (21) and taking into account that 𝑮 =

𝑛𝑮𝒉𝒌𝒍 (n integer) one finds: 

 𝑑௛௞௟ =
2𝜋𝑛

|𝒒|
=

2𝜋𝑛

2 sin 𝜃 ∙
2𝜋
𝜆

 (27) 

Herein 2 represents the angle between incident and scattered waves (Figure 12(a)) and n 
the diffraction order. By rearranging this result, the famous Bragg equation can be obtained: 

 2𝑑௛௞௟ sin 𝜃 = 𝑛𝜆 (28) 

 

Figure 12: (a) The so-called scattering triangle. (b) Illustration of the Bragg equation. 

The Bragg equation (28) has a simple interpretation (Figure 12(b)): The lattice planes 
(ℎ𝑘𝑙)  partially reflect the incident wave. The diffraction condition then amounts to the 
requirement that the path difference for waves reflected by adjacent lattice planes has to be 
an integer multiple of the wave length . 

2.5. Ewald Sphere 

In the last section we tried to get a deeper insight in the diffraction process by 
interpreting it more intuitively. We saw that the Bragg equation relates every X-ray reflex that 
can be observed with a set of parallel lattice planes (ℎ𝑘𝑙). The Laue condition, however, 
assigns every X-ray reflex to a reciprocal lattice point. This makes it convenient to label the 
reflexes with the indices of their corresponding reciprocal lattice points 𝐻𝐾𝐿, as illustrated in 
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Figure 13: In the upper part, the (𝐻0𝐿) plane of reciprocal space of a crystal with Wurtzite 
structure is displayed. According to Equation (11) and Figure 12(a), the maximum length of 
the scattering vector qmax in the case of backscattering ( = 90) is given by: 

 𝑞௠௔௫ = 2|𝒌| =
4𝜋

𝜆
 (29) 

 

Figure 13: Ewald sphere. 

 

Whenever the scattering vector is equal to a reciprocal lattice vector, an X-ray reflex 
is observed, as shown exemplarily for the (205) reflex. As a consequence, all reflexes which 
for a given wavelength  are accessible for diffraction experiments are situated within the 
hemisphere with radius equal to 4𝜋 𝜆⁄ . 

In the lower part of Figure 13, the lattice planes are depicted which scatter the 
incident X-ray beam according to the Bragg interpretation. 𝜔 designates the angle between 
the crystal surface and the incident X-ray beam, 𝜃 the angle between scattering lattice planes 
and incident X-ray beam and 𝜏 = 𝜔 − 𝜃  is the offset angle between crystal surface and 
scattering planes. The reflexes on the [001] axis, also labeled as 𝑞ୄ, are called symmetrical 
because for them 𝜔 = 𝜃. All the other reflexes are called asymmetrical. The components of 
the scattering vector parallel 𝑞∥ and perpendicular 𝑞ୄ to the crystal surface expressed as a 
function of 𝜔 and 2𝜃 read: 

 𝑞∥ =
2𝜋

𝜆
[cos(2𝜃 − 𝜔) − cos 𝜔] (30) 

 𝑞ୄ =
2𝜋

𝜆
[sin(2𝜃 − 𝜔) + sin 𝜔] (31) 



 17 

2.6. Structure Factor 

In Figure 13, the (00L) reflexes with L being odd numbers are represented by open 
circles, because these reflexes are forbidden, i.e. no scattered intensity is observed. In order 
to understand this, we now have to include the basis of the crystal lattice into our 
considerations. More generally, to be able to predict the intensity for different reflexes, we 
have to evaluate the Fourier coefficient 𝑛𝑮𝒒

 in Equation (26). 𝑛𝑮𝒒
 is related to n(r) by: 

 𝑛𝑮𝒒
=

1

𝑉௨௖
න 𝑛(𝒓)𝑒ି௜𝑮𝒒∙𝒓𝑑𝑉

 

௏ೠ೎

 (32) 

which can be easily verified by inserting the Fourier expansion (15) of 𝑛(𝒓) into (32). The 
integration herein extends over the volume of the whole unit cell 𝑉௨௖. In case the nuclei of 
the atoms are not too light, the principal contribution to the scattered X-ray intensity arises 
from the core electrons whereas the delocalized valence electrons can be neglected. 
Therefore n(r) can be expressed as the sum over the electron densities n() of the various 
atoms of the unit cell: 

 𝑛(𝒓) = ෍ 𝑛ఈ(𝝆)𝛿(𝑟 − 𝑟ఈ)

ఈ

 (33) 

where  denotes the distance from the center of a given atom , and r the position of an 
atom  with respect to the origin of the unit cell (Figure 14). With this Equation (32) can be 
rewritten as: 

 
𝑛𝑮𝒒

=
1

𝑉௨௖
෍ 𝑒ି௜𝑮𝒒∙𝒓𝜶

ఈ

න 𝑛ఈ(𝝆)𝑒ି௜𝑮𝒒∙𝝆𝑑𝑉

 

௏ഀᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
௙ഀ ൫𝑮𝒒൯

 
(34) 

 

Figure 14: Definition of r and . r points the center of an atom  of the unit cell,  to a point 
with in that atom. 

Now we integrate only over the volume V of a single atom, multiply the result with 
the appropriate phase factor and sum up over all the atoms of the unit cell. The atomic 

scattering factor 𝑓௔൫𝑮𝒒൯ defined in Equation (34) can be seen as the Fourier transformation 

of the atomic electron density. If the electrons were point charges at the atomic centers r, 
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𝑓௔൫𝑮𝒒൯ = 1 independent of 𝑮𝒒. But since the electron density in general stretches over some 

angstroms around r, 𝑓௔൫𝑮𝒒൯  is not constant but decreases for higher indexed reflexes. 

Accordingly, the Fourier coefficient 𝑛𝑮𝒒
 is also known as structure factor SHKL (𝑮𝒒 = ℎ𝒃𝟏 +

𝑘𝒃𝟐 + 𝑙𝒃𝟑): 

 𝑆ு௄௅ = ෍ 𝑓ఈ൫𝑮𝒒൯𝑒ି௜𝑮𝒒∙𝒓𝜶

ఈ

 (35) 

The position 𝒓𝜶 = 𝑢ఈ𝒂𝟏 + 𝑣ఈ𝒂𝟐 + 𝑤ఈ𝒂𝟑  of the atoms in the unit cell can be 
expressed by triples (uvw) with u, v, w < 1. By taking into account Equation (20), the 
structure factor then reads: 

 𝑆ு௄௅ = ෍ 𝑓ఈ൫𝑮𝒒൯

ఈ

𝑒ିଶగ௜(௛௨ഀା௞௩ഀା௟௪ഀ) (36) 

Finally, we want to evaluate the structure factor for the ideal Wurtzite lattice. The 

oxygen atoms in the unit cell are situated at (000), ቀଵ

ଷ

ଶ

ଷ

ଵ

ଶ
ቁ, the zinc atoms at ቀ00

ଷ

଼
ቁ and 

ቀ
ଵ

ଷ

ଶ

ଷ

଻

଼
ቁ (Figure 3). Therefore, we obtain: 

 𝑆ு௄௅ = 𝑓ை ൬1 + 𝑒
ିଶగ௜ቀ

௛
ଷ

ା
ଶ௞
ଷ

ା
௟
ଶ

ቁ
൰ + 𝑓௓௡ ൬𝑒ିଶగ௜

ଷ௟
଼ + 𝑒

ିଶగ௜ቀ
௛
ଷ

ା
ଶ௞
ଷ

ା
଻௟
଼

ቁ
൰ (37) 

We now examine the structure factors for the symmetric 00L reflexes: 

 

𝑆଴଴௅ = 𝑓ை൫1 + 𝑒ି௜గ௟൯ + 𝑓௓௡ ൬𝑒ି௜గ
ଷ௟
ସ + 𝑒ି௜గ

଻௟
ସ ൰ 

        = 𝑓ை൫1 + (−1)௟൯ + 𝑓௓௡ ൬𝑒ି௜గ
ଷ௟
ସ + (−1)௟𝑒ି௜గ

ଷ௟
ସ ൰ 

        = ൝2 ൬𝑓ை + 𝑒ି௜గ
ଷ௟
ସ 𝑓௓௡൰      𝑙 𝑒𝑣𝑒𝑛

0                                     𝑙 𝑜𝑑𝑑

 

(38) 

This shows that no intensity is observed for reflexes (00L) if L is any odd number. One 
can get a more intuitive picture by viewing the Wurtzite lattice as two interpenetrating, 
hexagonal close-packed lattices. Each of the sublattices has two atoms per unit cell at (000) 

and ቀଵ

ଷ

ଶ

ଷ

ଵ

ଶ
ቁ. Therefore, dhkl is effectively reduced by a factor of 2. When L is an odd number, 

the waves reflected at the centered lattice planes interfere destructively with the ones 
limiting the unit cell. 
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3. Experimental Setup 

Figure 15(a) shows schematically the measurement configuration of Rigaku SmartLab, 
a high-resolution X-ray diffractometer. The X-ray source, which is a copper (Cu) cathode 
driven by 40 kV high voltage, generates the incident X-ray beam, then a monochromator is 

used for selecting the CuK1 emission line (𝜆 = 1.54059Å). The intensity of the diffracted 
beam can be measured by a CCD detector that is mounted on the same goniometer as the X-
ray source. The angle between the incident X-ray beam and the sample surface is denoted as 
, while the angle enclosed by the incident beam and the diffracted beam is denoted as 2. 
An incident slit (IS) defines the size of incident X-ray beam, while the angular resolution of 
measurement can be adjusted by the two receiving slits (RS1 and RS2). In addition to the 
incident angle , sample rotation around the other two Euler angles –  and  – are controlled 
by the sample mounting stage (Figure 15(b)).  

 

Figure 15: (a) Schematic diagram of HRXRD diffractometer. (b) Definition of the three sample 
rotation axes. 

 

According to Equations (30) and (31), various scattering vectors can be measured by 
choosing different combinations of  and 2. However, differentiating Equation (28) and 
subsequently dividing the result by the same Equation (28) yields the differential Bragg 
equation: 

 
∆𝜆

𝜆
= cot 𝜃 ∙ ∆𝜃 +

∆𝑑௛௞௟

𝑑௛௞௟
 (39) 

In order to accurately determine dhkl, Equation (39) implies that not only good angular 
resolution is necessary, a highly monochromatic incident beam is also desirable. As shown in 
Figure 16, X-ray emission of Cu exhibits several characteristic wavelengths. These sharp and 
distinct emission lines – named K1, K2 and K – stem from radiative recombination from 
different atomic states. To reduce such wavelength dispersion, our HRXRD diffractometer 
utilizes a channel-cut germanium (Ge) single crystal on which the incident X-ray beam 
bounces twice off the (220) surfaces (Figure 15). At the correct angle only the CuK1 emission 
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line remains; however, this comes at the expense of ~ 70% X-ray photon flux. Equation (39) 
also suggests that the ∆𝜃 term can be significantly suppressed when 𝜃 → 90°, meaning that 
higher indexed reflexes (e.g. (006) versus (004)) are preferable for determining lattice 
constants. However, it should also be noted that higher indexed reflexes typically exhibit 
weaker diffraction intensities. 

 

Figure 16: (a) X-ray emission spectrum of Cu. (b) Atomic transitions associated with Cu K1, 
K2 and K emission lines.  
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4. Characterization of Real Crystals by HRXRD 

By means of HRXRD, deviations from the ideal crystal structure are investigated. For 
this purpose, the position and the width of X-ray reflexes are measured by registering the 
scattered X-ray intensity while rotating the sample around an Euler angle or changing the 
detector position and thus varying the length and the direction of the scattering vector. In 
Figure 17 the scattering geometry for a symmetrical and asymmetrical reflex is shown 
together with the scan directions of a 2𝜃/𝜔- and an 𝜔-scan. 

 

 

Figure 17: Ewald construction illustrating the scattering geometry in the case of a (a) 
symmetrical and an (b) asymmetrical reflex. The green and blue arrows show the scan 
directions for a 2𝜃/𝜔-scan and an 𝜔-scan, respectively. The reflexes within gray semicircles 
are in a conventional scattering geometry only accessible in transmission. 

 

4.1. 2Theta-Omega Scan 

By executing a 2𝜃/𝜔-scan, the incident angle 𝜔  is increased by moving the X-ray 
source along the goniometer circle, while the detector rotates simultaneously with twice the 
angular velocity (Figure 15(a)). The direction at which the scattering vector is pointing thereby 
remains unchanged, only the length of the scattering vector is varied. For symmetrical 
reflexes 𝜔 = 𝜃 and therefore the scan direction is along 𝑞ୄ (Figure 17(a)). Particularly, this 
scan along 𝑞ୄ is useful for checking if there are other crystalline phases incorporated in the 
crystal, which is true if other than the expected reflexes are observed. Moreover, the 
occurrence of forbidden reflexes hints at structural disorder in the examined crystal. 
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Figure 18: Broadening of the X-ray reflexes for a finite vertical coherence length. It is the same 
for all reflexes and solely determined by the film thickness 𝑙௭. 

In this laboratory exercise, we investigate thin films grown on a substrate (Figure 10). 
The vertical coherence length, i.e. the length of the crystallites that scatter the incident X-ray 
beam coherently, is limited by the layer thickness. Consequently, the integral in Equation (24) 
is also non-zero for a scattering vector q slightly different from a reciprocal lattice vector G:  

 𝐼 ∝
|𝐸଴|ଶ

𝑅ᇱଶ อ෍ 𝑛𝑮 න 𝑒௜(𝑮ି𝒒)∙𝒓𝑑𝑉

 

௏𝑮

อ

ଶ

=
|𝐸଴|ଶ

𝑅ᇱଶ ቚ𝑛𝑮𝒒
ቚ
ଶ

𝑙௫𝑙௬ ∙ ቤ
sin(∆𝑞௭𝑙௭)

∆𝑞௭
ቤ

ଶ

 (40) 

where we define ଵ
ଶ

(𝐺ଷ − 𝑞ଷ) = ∆𝑞௭. Therefore, the measured X-ray diffraction peaks are not 

-like, but are broadened along the 𝑞ୄ direction (Figure 18). The function ୱ୧୬మ(∆௤೥௟೥)

(∆௤೥)మ
 is plotted 

in Figure 19. The full width at half maximum (FWHM) of the main maximum is proportional 
to 1 𝑙௭⁄ . The measured peak width ∆(2𝜃)  in [rad] of a symmetrical reflex can thus be 
correlated with the layer thickness [2]: 

 𝑙௭ =
0.9𝜆

∆(2𝜃) ∙ cos 𝜃
 (41) 

Thereby we assumed that the broadening of the reflex along 𝑞ୄ is only due to the 
finite coherence length, and other broadening mechanisms such as heterogeneous strain are 
neglected. Furthermore, besides the main peak, secondary maxima are observed when the 
numerator |sin(∆𝑞௭𝑙௭)|  is maximum. The distance between such secondary maxima is 

∆𝑞௭
௠௔௫ =

గ

௟೥
. From this it can be deduced for symmetrical reflexes that 

 𝑙௭ =
𝜆 ∙ sin 𝜃

∆𝜃 ∙ sin 2𝜃
 (42) 

in which ∆𝜃 denotes half of the measured distance between secondary maxima in a 2𝜃/𝜔-
scan. 
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Figure 19: Plot of the function ୱ୧୬మ(∆௤೥௟೥)

(∆௤೥)మ
 for 𝑙௭ = 10. Its peak value is 𝑙௭

ଶ, and its FWHM is 

proportional to 1 𝑙௭⁄ . 

 

4.2. Omega Scan 

By definition, in an 𝜔-scan the sample is rotated around the 𝜔-axis (Figure 15(b)) and 
the plot of the scattered X-ray intensity as a function of 𝜔 is often called the rocking curve. 
Practically, in our X-ray diffractometer this is done by keeping the sample fixed while scanning 
the X-ray source and detector concurrently toward the same direction, such that the incident 
angle 𝜔  is varied but 2𝜃  remains unchanged. In the reciprocal space, an 𝜔-scan entails a 
variation of the scattering vector on a circular path around the origin (Figure 17).  

 

Figure 20: Broadening of the X-ray reflexes for a mosaic crystal. The finite coherence length 
in the growth plane gives rise to a broadening of the reflexes along 𝑞∥ , the tilt of the 
crystallites to a broadening along circular paths around the origin. 
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As discussed in section 1.2, the investigated ZnO films exhibit a columnar growth 
mode. Therefore, in the lateral plane perpendicular to the [0001]-direction the typical length 
for coherent scattering is limited by the crystallite size. This contributes to a broadening of 
the reflexes along the direction of limited coherence length, similar to the case of a finite layer 
thickness shown in Figure 18. For symmetrical reflexes the 𝜔-scan direction is quasi parallel 
to this direction (Figure 20(a)). If one assumes that the limited coherence size is the only 
reason for the broadening of a symmetrical rocking curve, by determining its FWHM ∆𝜔 a 
lower limit for the lateral crystallite size 𝑙∥ can be estimated by: 

 𝑙∥ =
0.9𝜆

∆𝜔 ∙ sin 𝜃
 (43) 

However, a rocking curve of a symmetrical reflex in general is not exclusively 
broadened by a finite lateral coherence length, but also by the tilt of the crystallites (Figure 
20(b)). This can be understood by examining Figure 21: For an ideal single crystal the Bragg 
equation (28) defines exactly the allowed angle of incidence for which a reflex can be 
observed. But a mosaic crystal is built up by many crystallites with different tilt angles 𝛿𝜔 
with respect to the [0001] direction. Thus, according to 𝛿𝜔 the crystallites can be grouped in 
ensembles. By rotating the sample around the 𝜔-axis, different ensembles are selected for 
which the Bragg equation (28) is fulfilled. 

 

Figure 21: X-ray diffraction for a (a) ideal single crystal and (b) a mosaic crystal where the tilt 
of the crystallites with respect to one another broadens the rocking curve. 

 

In conclusion, we have seen that the width of the rocking curve of a symmetrical reflex 
is influenced by a finite crystallite size as well as the tilt of the crystallites with respect to one 
another. Therefore, the FWHM ∆𝜔଴଴ଶ of the (002) rocking curve is often used as a figure of 
merit to evaluate the degree of mosaicity of a thin epitaxial film. The smaller ∆𝜔଴଴ଶ, the 
better the individual crystallites are aligned and the larger their size are. 
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On the other hand, the twist of the crystallites (Figure 10(b)) in a mosaic crystal has 
no influence on the 002 rocking curve, because it produces no variation of the vertical position 
of the (0001) lattice planes. Instead, it can be seen as inducing a tilt of the {101ത0} lattice 
planes. In order to investigate and quantify the twist of the crystallites, we thus have to 
determine the FWHM of the (100) rocking curve ∆𝜔ଵ଴଴. Yet, as the {101ത0} planes of the 
investigated ZnO thin films are perpendicular to the substrate plane, the measurement of 
∆𝜔ଵ଴଴ is not straightforward. One has to first determine the FWHM of rocking curves ∆𝜔ு଴௅ 

of which the associated lattice planes ൛ℎ0ℎത𝑙ൟ enclose successively smaller angles with the 
{101ത0} lattice planes, then ∆𝜔ଵ଴଴ can be extrapolated. For this purpose, the measurements 
have to be conducted in a so-called pseudo-symmetrical skewed geometry, because in the 
conventional geometry the reflexes whose associated lattice planes enclose the smallest 
angles with the {101ത0} lattice plane  are not accessible (reflexes in the gray semicircles in 
Figure 17). In the conventional diffraction geometry, the offset angle 𝜏 of the asymmetrical 

lattice planes ൛ℎ0ℎത𝑙ൟ is compensated by an adjustment of the angle 𝜔 (Figure 22(a))). In the 
skewed geometry the sample is rotated by 𝜒 = 𝜏 around the 𝜒-axis in order to move the 

൛ℎ0ℎത𝑙ൟ lattice planes in a position perpendicular to the diffraction plane that is defined by the 
direction of incident and scattered X-ray beam (Figure 22(b)(c)). Because 𝜏 is compensated by 
an adjustment of the Euler angle 𝜒, this geometry is also called pseudo-symmetrical for its 
similarity to the symmetrical reflexes 𝜔 = 𝜃.  

 

Figure 22: Illustration of the (a) conventional and (b) skewed geometry. For the conventional 
geometry the vector n normal to the sample surface and the vector m normal to the lattice 
plane lie in the diffraction plane. (c) In skewed geometry, n does not lie in the diffraction plane, 
but encloses an angle 𝜒 = 𝜏 with it. 

 

For a proper extrapolation, it is important that the FWHMs of the reflexes with a large 
angle 𝜒 can be determined. In order to extrapolate ∆𝜔ଵ଴଴, the measured ∆𝜔ு଴௅ are plotted 
as a function of 𝜒 and then fitted by: 

 ∆𝜔ு଴௅ = ට(∆଴ cos 𝜒)ଶ + ൫∆గ ଶ⁄ sin 𝜒൯
ଶ
 (44) 



 26 

where the fitting parameter ∆଴ corresponds to ∆𝜔ଵ଴଴. This is exemplarily shown in Figure 23. 
As this procedure is rather time-consuming, it is common to settle for approximating ∆𝜔ଵ଴଴ 
with the FWHM of the (101) rocking curve ∆𝜔ଵ଴ଵ which can be directly measured. The reflex 
201 would be better suited for this purpose, but it is often difficult to measure for thin films 
because of its low intensity. Figure 23 shows that ∆𝜔ଵ଴ଵ = 0.35° and the extrapolated value 
∆𝜔ଵ଴଴ = 0.4° differ only by 12.5%. Therefore, in order to study tendencies for samples grown 
under different growth conditions, the above approximation is quite reasonable. In section 
1.2 we have seen that the tilt of the crystallites is due to screw-type dislocations whereas the 
twist is due to edge-type dislocation. Hence, by assuming that the broadening of the rocking 
curves originates only from tilt and twist, it is possible to calculate from the FWHMs ∆𝜔଴଴ଶ 
and ∆𝜔ଵ଴଴ the dislocation densities by using the relations deduced by Dunn and Kogh [3]: 

 𝜌௦௖௥௘௪ =
∆𝜔଴଴ଶ

ଶ

4.35 ∙ |𝒃௦௖௥௘௪|ଶ
 (45) 

 𝜌௘ௗ௚௘ =
∆𝜔ଵ଴ଵ

ଶ

4.35 ∙ ห𝒃௘ௗ௚௘ห
ଶ (46) 

with the Burgers vector bscrew = [0001] for screw-type dislocations and bedge = ଵ
ଷ

[112ത0] for 

edge-type dislocations. 

 

Figure 23: Measured FWHMs of rocking curves as a function of the angle fitted by Equation 
(44). In the inset the (101) rocking curve is shown. 
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4.3. Reciprocal Space Map 

The scan mode mapping a two-dimensional region of reciprocal space is known as 
reciprocal space map. With a point (0D) X-ray detector, such a scan can be carried out by 
combining the 2𝜃/𝜔- and the 𝜔-scan mode in the following way: first for a given length of 
the scattering angle, an 𝜔 -scan is performed, then the 2𝜃/𝜔-scan mode is employed to 
change the length of the scattering vector by a small amount 𝛿𝑞, then again an 𝜔-scan is 
performed and so on . . . In this exercise, the CCD X-ray detector of Rigaku SmartLab can be 
operated as an array (1D) detector, meaning that the diffraction intensities within an angular 
range of 2𝜃 can be measured simultaneously. By scanning the 𝜔 steps, the reciprocal space 
map can be acquired in a much shorter time. The result of such a scan conducted at the 
position of the ZnO (205) reflex is shown in Figure 24. The arrows denote the peak broadening 
directions due to a finite lateral crystallite size and due to the tilt of the crystallites (mosaicity). 
The broadening due to the finite layer thickness can be neglected. Without using additional 
crystal analyzer, the instrument resolution is not sufficient for resolving these two principal 
broadening mechanisms, which is why the peak exhibits an ellipsoidal form. From the position 
of the principal axis it can be deduced that the broadening is due to both mechanisms. 

 

Figure 24: Reciprocal space map of the (205) reflex of a ZnO thin film. In the inset the 
calculated lattice constants are given. 
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A reciprocal space map of an asymmetrical reflex allows the determination of both 
the a and the c lattice constant. As discussed in section 3, the high indexed reflexes are best 
suited for this because the contribution of the limited angular resolution in Equation (39) 
decreases with . a and c can be calculated by determining the components 𝑞ୄ and 𝑞∥ of the 
peak center: 

 𝑎 =
1

𝑞∥(𝑟𝑙𝑢)

𝜆

√3
ℎ (47) 

 𝑐 =
1

𝑞ୄ(𝑟𝑙𝑢)

𝜆

2
𝑙 (48) 

In the above equations 𝑞ୄ and 𝑞∥ have to be inserted in reciprocal lattice units (rlu), i.e. in 
units of 4𝜋 𝜆⁄  which is equivalent to normalizing the radius of the Ewald sphere to 1. 

 

4.4. Phi Scan 

By performing a 𝜑-scan,  𝜔  and 2𝜃  are kept constant while the sample is rotated 
around the 𝜑-axis. For our samples this corresponds to a rotation around the [0001]-axis. 
Hence, for asymmetric reflexes HKL, by performing a 𝜑 -scan of 360, six peaks can be 
observed which is in accordance with the six-fold symmetry of the [0001]-axis. By conducting 
such a 360 𝜑-scan for the substrate and the thin film on top, the epitaxial relationship 
between substrate and thin film can be established. 
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5. Pre-Measurement Exercises 

 Calculate the angle 2 for the (002) reflex of ZnO, given that the X-ray wavelength 𝜆 =

1.54059Å and the lattice constants of ZnO are cZnO = 5.20 Å, aZnO = 3.25 Å. 
 Starting with Equation (21), derive Equation (22). 
 Calculate d10.1 – the distance of the (101ത1) lattice planes. Calculate the offset angle  

of these lattice planes with respect to the (0001) lattice planes. 
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6. Experimental Procedure 

In this experiment exercise, you will measure three samples in total. Among which, 
Sample A and B are ZnO thin films, while Sample C is a Zn1-xMgxO thin film. All samples were 
grown by molecular beam epitaxy (MBE) on sapphire (0001) substrates. To finish this exercise 
efficiently, it is recommended to carry out all measurements on a sample before moving to 
the next one, with the following sequence.  

6.1. Optics Alignment 

Before this experiment exercise starts, your instructor should have switched on the 
Rigaku SmartLab diffractometer and have the correct X-ray optics installed. You should not 
replace any X-ray optics, other than the height reference sample 
plate, central slit, 4-inch wafer sample plate and the samples. 
Please check the X-ray generator status at the bottom right 
corner, and ensure that it is operating at 40 kV and 50 mA, before 
continuing on the following steps. Otherwise, inform your 
instructor immediately. 

a) From Part Activities panel, double-click Alignment Activity / Optics Alignment (PB) 
to add it to the Sequence panel. Repeat the same for Alignment Activity / Sample 
Alignment (Thin Film) and Measurement Activity / General Measurement. 
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b) Click the ‘Optics Alignment (PB)’ tab in the sequence panel to display the setting dialog 
box. Select ‘Customized optics’ then click on ‘Customized…’. In the new window, first 
click on ‘Set Current Optics’ then check whether the optical part list is identical to the 
setting in the blue box below. Click on ‘OK’ to proceed. 

 

 
c) Click ‘Run’ to execute the ‘Optics Alignment (PB)’ macro script. A window will pop up 

in ~ 15 seconds reminding the installation of alignment slit. Because this is already 
done by the instructor, click ‘OK’ to continue. 

d) The diffractometer will align each optical component by maximizing the detected X-
ray intensity going through the central slit. This process will take ~ 5 minutes. 

6.2. Sample A Alignment 

a) Click the ‘Sample Alignment (Thin Film)’ tab in the sequence panel to display the 
settings dialog box. Input the estimated sample dimensions. Ensure to select ‘RxRy 
attachment head + 4-inch wafer sample plate’ and uncheck the ‘Surface normal 
alignment’ option.  
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b) Click ‘Run’ to execute the ‘Sample Alignment (Thin Film)’ macro script. A window with 
graphic instructions will pop up in ~ 15 seconds. Remove the central slit used for 
alignment. Press the gray lever on the back side of the height reference sample plate, 
then rotate it counter-clockwise to remove it.  

 
c) Install the 0-3 mm spacer by aligning the latches with the corresponding holes, then 

securing it by rotating clockwise. Install the 4-inch wafer sample plate in the same way.  

 

d) Use double-side tape to fix Sample A at the center of the sample holder. The long side 
of sample should point toward the doors of diffractometer.  
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e) Click ‘OK’ in the instruction window. The script will vary the sample height (Z axis) and 
find the location at which the X-ray intensity is cut to exactly half of the maximum 
value. Then, an 𝜔-scan finds the paralleling between the sample surface and the X-ray 
beam. The sequence repeats for three iterations, and the entire process will take ~ 2 
minutes. At the end, find the Z value shown in the ‘H/W Status’ panel on the right-
hand side, record the value in the measurement report sheets in Appendix A. 

6.3. Sample A 

Mosaicity of heteroepitaxial ZnO thin film – Rocking curve of the (002) reflex  

a) First, perform alignment optimization to the symmetric ZnO (002) reflex. You can find 
the 2𝜃 value for the ZnO (002) reflex in Appendix B. In the Pro Control panel (bottom 
of the software screen), move the 𝜃/2𝜃-axis to this value. Observe how the X-ray 
source and detector move in the diffractometer. Check the ‘H/W Status’ panel – What 
is the value of 𝜔-axis now? Record the 𝜃/2𝜃 value in the measurement report sheets 
in Appendix A. 

 
b) In the ‘H/W Status’ panel, check if the incident slit (IS) and the two receiving slits (RS1, 

RS2) are set at 1, 1, and 1.1 mm, respectively. If not, use the Slit setting box in the Pro 
Control window to adjust them. 
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c) In Pro Control, select the 𝝋-axis and set the scan type to absolute, range to 0-360, 
1 step, and 180/min speed. Select the ‘Move to peak’ box below, then start the scan. 
Observe how the sample is moved during the scan.  

 
d) Due to the imperfect mounting of the sample on the wafer sample plate, this 𝜑-scan 

should observe one or two broad peaks. After the scan, the software should 
automatically find the peak position and move the 𝜑-axis there. (If the peak position 
assigned by the software is incorrect, select the ‘Data Browser’ tab on the top of 
control software, then ‘Search Peaks  Full Width at Half Maximum Center.’ Move 
the 𝜑-axis to the new peak value by Pro Control.) Find the final 𝜑 position in the ‘H/W 
Status’ and record it to Appendix A. 

 

e) Now the imperfect sample mounting needs to be compensated by the 𝜔-axis. To 
achieve this, switch to the 𝜔-axis in Pro Control, set the scan range to relative 1, 
0.02 step, and 1/min speed. Observe how the 𝜔- and 2𝜃-axes change in the ‘H/W 
Status’ panel. Record the optimized 𝜔 position. 
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f) Change the slit setting to IS=0.05 mm, RS1=0.05 mm, and RS2=0.3 mm. Switch to 
2𝜃/𝜔 axis and set the scan range to relative 0.5, 0.01 step, and 0.5/min speed. 
Observe how the 𝜔- and 2𝜃/𝜔-axes changes in the ‘H/W Status’ panel.’ Record the 
optimized 2𝜃/𝜔 position. 

g) Now the actual rocking curve measurement (𝜔-scan) is performed on the ZnO (002) 
reflex. Click on the ‘General Measurement’ tab established earlier in the sequence 
panel. Set up an 𝜔-scan with a relative 0.5 range, 0.01 step, and 0.5/min speed. 
Also change the slit setting to IS=0.05 mm, RS1=0.05 mm, and RS2=0.3 mm. In the ‘File 
name:’ field, choose an appropriate data folder and assign a name for this 
measurement (save the file in .RASX format). Click ‘Run’ to start the measurement. 
(You can drag this window sideways in order to follow the measurement progress.) 
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h) Close the ‘General Measurement’ window. On the top of control software, find the 
‘Data Browser’ tab and then ‘Search Peaks  Full Width at Half Maximum Center.’ 
Record this peak value of 𝜔-scan in Appendix A. To save the file in the .xy format for 
writing your lab report, go to the ‘Data Browser’ tab at the bottom, find the correct 
file under ‘Package//’ and right click to select ‘Export  Data To File.’ Choose the .XY 
format as the file type. 

 

i) Now, use Pro Control to move the 𝜔-axis to the new peak value that you just obtained 
from the ZnO (002) rocking curve measurement. Double check if both the 𝜔- and 
2𝜃/𝜔-axes are at the right optimized values in the ‘H/W Status’ panel. Set up a 2𝜃/𝜔-
scan using ‘General Measurement,’ with a relative 0.2 range, 0.004 step, and 
0.2/min speed as described in part g). Search the peak position and export the data 
to .XY format as described in part h). 

j) In the record tables of Appendix A, the measurements enclosed by thicker borders 
should be performed by the ‘General Measurement’ function, and results should be 
saved. For all the prior measurements, the ‘Pro Control’ function should be used. 

Rocking curve of the ZnO (101) reflex 

k) The next measurement will be the rocking curve of the ZnO (101) reflex, performed at 
the skewed geometry (see Figure 22(b)). Using ‘Pro Control’, move the 𝜃/2𝜃-axis to 
the value of ZnO (101) reflex (use Appendix B). Then set the Euler angle 𝜒 to the offset 
angle 𝜏 of ZnO (101). Observe the movement of the sample. Change the slit settings 
to IS=1 mm, RS1=1 mm, and RS2=1.1 mm. 

l) In ‘Pro Control,’ perform a 𝜑-scan with 0-360 absolute range, 1 step, and 180/min 
speed. Check if the peak value is assigned correctly (if not, manually search and move 
it). Record the new 𝜑 position afterwards. 

m) Redo 𝜑-scan but with a relative 2 range, 0.04 step, and 2/min speed. Record the 
optimized 𝜑 position after the scan. 

n) Still in ‘Pro Control,’ perform a 𝜒-scan with a relative 2 range, 0.04 step, and 2/min 
speed. Record the optimized 𝜒 position after the scan. 

o) Optimize the 𝜔-axis with a scan of relative 2 range, 0.04 step, and 2/min speed. 
Record the optimized 𝜔 position after the scan. 
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p) Reduce the slit opening sizes to IS=0.2 mm, RS1=0.2 mm, and RS2=0.3 mm. In ‘Prop 
Control,’ perform a 2𝜃/𝜔-scan with a relative 1.5 range, 0.03 step, and 1.5/min 
speed. Record the optimized 2𝜃/𝜔 position after the scan. 

q) Using the ‘General Measurement’ function, set up and save an 𝜔-scan with a relative 
1.5 range, 0.03 step, and 1.5/min speed. Set the slit opening sizes to IS=0.2 mm, 
RS1=0.2 mm, and RS2=0.3 mm. Search the peak position and export the data to .XY 
format as described in part h). 

Epitaxial relationship between ZnO and Al2O3 

r) Next we will confirm the epitaxial relationship between the ZnO layer and the sapphire 
substrate by performing two separate 𝜑 -scans on the ZnO (112) and Al2O3 (113) 
reflexes (absolute range 0-360). These two scans will be done at skewed geometry 
(𝜒 = 𝜏), and you can find the relevant 𝜃/2𝜃 and 𝜏 values in Appendix B. Use the slit 
settings of IS=1 mm, RS1=1 mm, and RS2=1.1 mm. Save and export the scan results 
properly. 

 

6.4. Sample B 

Mosaicity of heteroepitaxial ZnO thin film – Rocking curve of the (002) reflex  

a) Install Sample B onto the sample holder. (If the instrument doors are locked, they can 
be unlocked by clicking on the ‘Door Lock off’ icon on the top task bar.) Follow the 
same sample alignment procedure as described in section 6.2. Record the sample 
height Z value after the alignment. 

 
b) We will first perform a ZnO (002) rocking curve measurement, as was done for Sample 

A. However, the peak widths measured from Sample B should be substantially smaller, 
and the peak intensities substantially higher. Similar to steps a-c in section 6.3, use 
‘Pro Control’ to move the 𝜃/2𝜃-axis to the expected value for ZnO (002) reflex, then 
do a 𝜑-scan with 0-360 absolute range, 1 step, and 180/min speed. Record the 
optimized 𝜑 position after the scan. 

c) Similarly, we now proceed with the optimization of the 𝜔- and 2𝜃/𝜔-axes. Use ‘Pro 
Control’ for an 𝜔-scan with a relative 0.5 range, 0.005 step, and 0.5/min speed. 
Record the new 𝜔 position. 

d) Perform a 2𝜃/𝜔-scan with a relative 0.5 range, 0.005 step, and 0.5/min speed. 
Record the new 2𝜃/𝜔 position. 
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e) Reduce the slit opening sizes to IS=0.05 mm, RS1=0.05 mm, and RS2=0.3 mm. Perform 
an 𝜔-scan with a relative 0.2 range, 0.002 step, and 0.2/min speed. Record the 
new 𝜔 position. 

f) Perform another 2𝜃/𝜔 optimization scan with a relative 0.3 range, 0.002 step, and 
0.3/min speed. Record the new 2𝜃/𝜔 position. 

g) Use the ‘General Measurement’ function to set up an 𝜔-scan with a relative 0.05 
range, 0.0002 step, and 0.05/min speed. Search for the peak position, move to the 
new 𝜔 peak position by ‘Pro Control,’ and export the file to .XY format. 

h) Use the ‘General Measurement’ function to set up a 2𝜃/𝜔-scan with a relative 0.5 
range, 0.001 step, and 0.2/min speed. Search for the peak position and export the 
file to .XY format. 
 

Wide range characterization of ZnO/Al2O3 

i) Record a wide range 2𝜃/𝜔-scan as shown in the figure below. Change the slit setting 
to IS=1 mm, RS1=1 mm, and RS2=1.1 mm. Set the scan range to be 20 – 150, 0.2 
step, and 5/min speed. Export the data to .XY format for writing your lab report. (This 
scan takes ~ 26 minutes and you can schedule your lunch break during this time.) 
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Reciprocal Space Map of the ZnO (205) reflex 

j) Now we move to measure the reciprocal space map around the (205) reflex of ZnO. 
Because this is an asymmetric reflex, the angles of X-ray source 𝜃௦ and detector 𝜃ௗ are 
not identical, but need to be offset by the 𝜏 angle. Look up the corresponding 2𝜃 and 
𝜏  values from Appendix B, and calculate 𝜃௦ = (2𝜃 2⁄ ) − 𝜏   and 𝜃ௗ = (2𝜃 2⁄ ) + 𝜏 . 
Record the calculated values and move them in the ‘Pro Control’ panel. Observe the 
relative positions of X-ray source and detector to the sample surface. Check if the 2𝜃-
axis position in ‘H/W Status’ panel is correct. 

 
k) Perform a 𝜑-scan with 0-360 absolute range, 1 step, and 180/min speed. Record 

the optimized 𝜑 position after the scan. 
l) Perform an 𝜔-scan with a relative 1 range, 0.02 step, and 1/min speed. Record 

the new 𝜔 position. 
m) Perform a 2𝜃/𝜔  optimization scan with a relative 0.5 range, 0.01 step, and 

0.5/min speed. Record the new 2𝜃/𝜔 position. 
n) From Part Activities panel, double-click Measurement Activity / RSM Measurement 

to add it to the Sequence panel. Open the settings of RSM Measurement, specify the 
file destination and select the ‘Customized conditions’ option. 
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o) In the new settings window, select ‘1D(single exposure)’ as the detector mode. Check 
the ‘Move to origin’ box and then ‘Read Current Positions’ – these values will vary 
based on your previous optimization steps. Change the slit setting to IS=1 mm, RS1=20 
mm, and RS2=Open. Set the 2𝜃-axis range to be relative 2 – this will be covered by 
the length of the CCD detector and therefore no stepwise scan is required. Set the 𝜔 
axis range to be relative 1 with 0.005 step and 1/min speed. Execute the 
measurement and you can observe the slice images of RSM in real time.  

 
p) When the measurement is finished, select ‘Chart / Axes:’ and change the setting 

from ‘Angular’ to ‘Reciprocal.’ The just collected 2D data (𝜔, 2𝜃) will be converted to 
the reciprocal space (𝑄௫ 2𝜋⁄ , 𝑄௭ 2𝜋⁄ ). 

 
q) Right-click on the graph, select ‘Export  Export Data’ then specify the file 
destination. Pay attention to the unit difference from Equations (47) and (48).   
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6.5. Sample C  

Determining the Mg content of Zn1-xMgxO 

a) Install Sample C onto the sample holder. Follow the same sample alignment procedure 
as described in section 6.2. Record the sample height Z value after the alignment. 

b) Here, you will investigate the Mg content x for a Zn1-xMgxO sample. As the exact value 
of the c-lattice constant of Sample C is unknown, first you have to use the (006) reflex 
of sapphire (Al2O3) to correct the angular deviation from sample mounting. In ‘Pro 
Control’ panel, move the 𝜃/2𝜃-axis to the 2𝜃 value of the Al2O3 (006) reflex. Do a 𝜑-
scan with 0-360 absolute range, 1 step, and 180/min speed. Record the optimized 
𝜑 position after the scan. (Use the slit setting IS=1 mm, RS1=1 mm, and RS2=1.1 mm) 

c) Perform an 𝜔-scan with a relative 1 range, 0.004 step, and 1/min speed. Record 
the new 𝜔 position. 

d) Now, move the 2𝜃/𝜔 axis to the expected 2𝜃 value of the ZnO (006) reflex. Because 
Sample C is not pure ZnO and should have a quite different 2𝜃 angle for its (006) reflex, 
you will need to find the actual peak by expanding the scan range. Perform a 2𝜃/𝜔-
scan with a relative 2.5 range, 0.05 step, and 2.5/min speed. Record the new 
2𝜃/𝜔 position. 

e) Perform an 𝜔 -scan with a relative 0.1 range, 0.002 step, and 0.1/min speed. 
Record the new 𝜔 position. 

f) Reduce the slit opening sizes to IS=0.05 mm, RS1=0.05 mm, and RS2=0.3 mm. Use the 
‘General Measurement’ function to collect a 2𝜃/𝜔-scan, with a relative range of 0.2, 
0.002 step, and 0.04/min speed. Search for the peak position and export the file 
to .XY format. 

6.6. Post-Measurement 

Collect all the samples to the original container and clean the double side tapes from 
the wafer sample holder. Inform your instructor so that the X-ray diffractometer can be 
switched off. Use a USB dongle to bring the measurement results with you. 
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7. Report 

1) Plot the long 2𝜃/𝜔  scan of sample B in a logarithmic scale. Which peaks can you 
identify?  

2) Estimate the layer thickness of sample A by using Equation (41). 
3) Determine the layer thickness of sample B by using Equations (41) and (42). Compare 

the obtained values! Conclusion? 
4) Estimate the screw-type dislocation densities of samples A and B and their lateral 

crystallite size. Compare the structural quality of both samples. 
5) Estimate the edge-type dislocation density of sample A. 
6) Illustrate graphically which lattice planes are associated with the (112) and the (113) 

reflexes respectively. Verify the epitaxial relation of ZnO on a c-plane sapphire 
substrate. 

7) Determine the peak center of the ZnO (205) reflex. Determine the a- and c-lattice 
constants of sample B. Which mechanisms can you identify for the broadening of its 
(205) reflex? Calculate the lattice mismatch by assuming that the ZnO film on the 
sapphire substrate is fully relaxed and by taking into account the formation of a 
coincidence lattice. 

8) Determine the c-lattice constant of sample C. Why was the 006-reflex instead of the 
(002) reflex used for this purpose? Sadofev et al. [4] demonstrated the validity of 
Vegard's rule and found for the variation of the c-lattice constant with the Mg-content 
x for Zn1-xMgxO: 

𝑐௓௡భషೣெ௚ೣை = 𝑐௓௡ை − 𝑥 ∙ 0.17Å (49) 

Use this relation with the above determined value for cZnO to calculate the Mg-content 
of sample C. Estimate the error of the obtained result by assuming that the Equation 
(49) is accurate. 
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Appendix A Measurement Report Sheet   

 

Measurement Record – Sample A Sample height 𝑍 = 

Scan 
Axis 

Range [] Step [] 
Speed 

[/min] 

Slit [mm] 
Result 

IS RS1 RS2 

ZnO (002) 𝜃/2𝜃 = 

𝜑 0-360 1 180 1 1 1.1 𝜑 = 

𝜔 1 0.02 1 1 1 1.1 𝜔 = 

2𝜃/𝜔 0.5 0.01 0.5 0.05 0.05 0.3 2𝜃/𝜔 = 

𝜔 0.5 0.01 0.5 0.05 0.05 0.3 𝜔 = 

2𝜃/𝜔 0.2 0.004 0.2 0.05 0.05 0.3 2𝜃/𝜔 = 

ZnO (101)     skewed geometry 𝜒 = 𝜃/2𝜃 = 

𝜑 0-360 1 180 1 1 1.1 𝜑 = 

𝜑 2 0.04 2 1 1 1.1 𝜑 = 

𝜒 2 0.04 2 1 1 1.1 𝜒 = 

𝜔 2 0.04 2 1 1 1.1 𝜔 = 

2𝜃/𝜔 1.5 0.03 1.5 0.2 0.2 0.3 2𝜃/𝜔 = 

𝜔 1.5 0.03 1.5 0.2 0.2 0.3 𝜔 = 

ZnO (112)     skewed geometry 𝜒 = 𝜃/2𝜃 = 

𝜑 0-360 1 180 1 1 1.1  

Al2O3 (113)     skewed geometry 𝜒 = 𝜃/2𝜃 = 

𝜑 0-360 0.5 90 1 1 1.1  
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Measurement Record – Sample B Sample height 𝑍 = 

Scan Axis Range [] Step [] 
Speed 

[/min] 

Slit [mm] 
Result 

IS RS1 RS2 

ZnO (002)  𝜃/2𝜃 = 

𝜑 0-360 1 180 1 1 1.1 𝜑 = 

𝜔 0.5 0.005 0.5 1 1 1.1 𝜔 = 

2𝜃/𝜔 0.5 0.005 0.5 1 1 1.1 2𝜃/𝜔 = 

𝜔 0.2 0.002 0.2 0.05 0.05 0.3 𝜔 = 

2𝜃/𝜔 0.3 0.002 0.3 0.05 0.05 0.3 2𝜃/𝜔 = 

𝜔 0.05 0.0002 0.05 0.05 0.05 0.3 𝜔 = 

2𝜃/𝜔 0.5 0.001 0.2 0.05 0.05 0.3 2𝜃/𝜔 = 

2𝜃/𝜔 20-150 0.2 5 1 1 1.1 Wide range measurement 

ZnO (205)    asymmetric geometry 𝜃௦ =              𝜃ௗ = 𝜔 =              2𝜃 = 

𝜑 0-360 1 180 1 1 1.1 𝜑 = 

𝜔 1 0.02 1 1 1 1.1 𝜔 = 

2𝜃/𝜔 0.5 0.01 0.5 1 1 1.1 2𝜃/𝜔 = 

2𝜃 2 Single exposure 
1 20 Open 

Reciprocal space mapping 

(1D detection, single exposure) 𝜔 1 0.002 0.2 
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Measurement Record – Sample C Sample height 𝑍 = 

Scan Axis Range [] Step [] 
Speed 

[/min] 

Slit [mm] 
Result 

IS RS1 RS2 

Al2O3 (006) 𝜃/2𝜃 = 

𝜑 0-360 1 180 1 1 1.1 𝜑 = 

𝜔 1 0.004 1 1 1 1.1 𝜔 = 

ZnO (006)    2𝜃/𝜔 = 

2𝜃/𝜔 2.5 0.05 2.5 1 1 1.1 2𝜃/𝜔 = 

𝜔 0.1 0.002 0.1 1 1 1.1 𝜔 = 

2𝜃/𝜔 0.2 0.002 0.04 0.05 0.05 0.3 2𝜃/𝜔 = 

 

  



Appendix B Theoretical 𝟐𝜽 and 𝝉 values of ZnO and Al2O3 

 

ZnO 
a = 3.2475 Å 
c = 5.2024 Å 

 = 1.540598 Å 

h k l 2𝜃 [°] Offset 
𝜏 [°] 

0 0 1 17.0298 0.0000 
0 0 2 34.4510 0.0000 
0 0 3 52.7443 0.0000 
0 0 4 72.6360 0.0000 
0 0 5 95.5195 0.0000 
0 0 6 125.3454 0.0000 
1 0 1 36.2817 61.6046 
1 0 2 47.5788 42.7658 
1 0 3 62.9133 31.6581 
1 0 4 81.4654 24.8182 
1 0 5 104.2539 20.3025 
1 0 6 136.7639 17.1346 
2 0 1 69.1444 74.8747 
2 0 2 77.0282 61.6046 
2 0 3 89.7001 50.9616 
2 0 4 107.5595 42.7658 
2 0 5 134.1325 36.4986 
3 0 1 113.2135 79.7852 
3 0 2 121.7154 70.1811 
3 0 3 138.1535 61.6046 
1 1 1 59.5991 72.6663 
1 1 2 68.0062 58.0265 
1 1 3 81.0676 46.8830 
1 1 4 98.7233 38.6944 
1 1 5 123.1126 32.6514 

 
*Based on Equations (22) and (28) 

 

 

Al2O3 
a = 4.7577 Å 

c = 12.9907 Å 
 = 1.540598 Å 

h k l 2𝜃 [°] Offset 
𝜏 [°] 

0 0 3 20.4937 0.0000 
0 0 6 41.6823 0.0000 
0 0 9 64.5072 0.0000 
0 0 12 90.7234 0.0000 
0 0 15 125.6071 0.0000 
1 0 2 25.5820 57.6115 
1 0 4 35.1564 38.2459 
1 0 5 41.0363 32.2345 
1 0 8 61.3119 21.5099 
1 0 11 85.4568 15.9936 
1 0 14 116.6280 12.6916 
2 0 10 89.0158 32.2345 
2 0 13 117.9070 25.8761 
3 0 12 129.9224 38.2459 
4 0 8 124.6458 57.6115 
4 0 11 165.7720 48.9045 
1 1 0 37.7873 90.0000 
1 1 3 43.3644 61.2177 
1 1 6 57.5112 42.3071 
1 1 9 77.2505 31.2482 
1 1 12 102.8461 24.4693 
1 1 15 142.3663 20.0047 
2 2 0 80.7256 90.0000 
2 2 3 84.3832 74.6411 
2 2 6 95.2782 61.2177 
2 2 9 114.1066 50.5104 
2 2 12 148.3703 42.3071 



 


