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1. Introduction

Gallium arsenide (GaAs) in not only the material of choice for producing high-
frequency electronic semiconductor devices (e.g. the High Electron Mobility Tran-
sistor (HEMT)) used in wireless telecommunications, it also plays an important
role in basic research on semiconductors. In particular, combining GaAs layers
with other materials such as aluminum arsenide (AlAs) or indium arsenide (InAs)
opens a wide playground for the investigation of interesting modern physical phe-
nomena.

Growing a layer sequence GaAs - AlGaAs - AlGaAs:Si1 - AlGaAs with molec-
ular beam epitaxy one ends up with a sheet of electrons accumulated in the GaAs
nearby the GaAs/AlGaAs interface. This is called a two-dimensional electron sys-
tem (2DES). These electrons see only a small disturbing coulomb potential due
to the ionized Si atoms far away from the conducting layer. Consequently, they
are able to travel typically some µm without being scattered. Therefore, they are
highly sensitive to an external perturbating potential such as periodically etched
holes or lines along their path. An additionally applied external magnetic field
perpendicular to the 2DES forces the electrons on circular orbits with a diame-
ter proportional to 1/B. Interesting effects occur in the transport properties of
such a device if the diameter and the periodicity of the lines or holes are on the
same length scale. These phenomena will be studied experimentally in detail here.

In this practical exercise you have the opportunity to learn different aspects
of measuring and handling delicate samples, e.g. the Lock-In technique to detect
low voltages. Furthermore, you use superconducting magnets to generate the
magnetic fields required, and methods to cool down samples to 4K and below.

1AlGaAs:Si indicates a doped layer with only a few silicon atoms per thousand.
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2. Some basic considerations

2.1 2D Electron Systems

One possibility to realize a two-dimensional electron system (2DES) is to epitax-
ially grow an AlGaAs-GaAs heterostructure as shown in figure 2.1 a. Electrons
originating from an AlGaAs:Si donor layer move towards the interface between
AlGaAs and GaAs due to the lower conduction band energy in GaAs. As a result,
positively charged atoms are left in the donor layer where they set up an electric
field in the space between. This bends the conduction and the valence band such
that a triangular shaped potential well located at the heterointerface is formed
in the conduction band (see. Fig. 2.1.).

Figure 2.1: a) Layer sequence of a GaAs-AlGaAs heterojunction doped with Si.
b) The lower edge of the conduction band Ec and the upper edge of the valence
band Ev as a function of the distance of the surface. For clarity, the layer sequence
is repeated below the band structure.

While the electron movement within the xy-plane is free, the movement in
growth direction (z-direction) is quantized and the energy of an electron is:

E = Ez
i +

(
ℏ2k2

x

2m∗ +
ℏ2k2

y

2m∗

)
, (2.1)

with the quantized sub-band energy Ez
i (i = 0, 1, 2, ...) in z-direction and the

effective1 electron mass m∗. With sufficiently low temperature and electron den-
sity ns only the lowest of the energy levels Ez

0 is occupied2, so we call our electron

1The effective mass represents the influence of the periodic crystal potential.
2This is the case for the used AlGaAs/GaAs heterostructure at 4.2K.
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system a two− dimensional electron system (2DES).
The density of States D(E) for such a system is constant within a sub-band.

For the lowest sub-band Ez
0 is:

D(E) =
m∗

πℏ2
. (2.2)

So for the Fermi energy EF , the Fermi velocity vF and the Fermi wavevector
kF holds:

kF =
√
2πns, (2.3)

vF =
ℏ
√
2πns

m∗ , (2.4)

EF =
ℏ2πns

m∗ . (2.5)

Exercise 1: Verify the relations given above in equations 2.3-2.5. (Start
with calculating the density of states in k-space. Then calculate the area
of the Fermi circle and combine both results to obtain ns for k = kF .)

The simplest way to describe charge transport through such a system is related
to the Drude model. Electrons are accelerated in an external electric field until
they are stopped after a time τ due to scattering (τ does not depend on the
magnetic field). Thus, they have the drift velocity v⃗D according to:

v⃗D =
eτ

m∗ E⃗ = µE⃗, (2.6)

with µ = eτ
m∗ called mobility. Carrying charges, the current density is

j⃗ = ensv⃗D. (2.7)

Here another quantity describing the electronic system should be introduced,
the mean free path l. Between two scattering events, the electron moves with the
Fermi velocity vF , thus:

l = τvF =
ℏ
e
µ
√
2πns, (2.8)

The current density j⃗ and the driving electric field E⃗ are connected by the
conductivity tensor σ resp. the resistivity tensor ρ as follows (remember that we
have a 2D system!): (

jx
jy

)
=

(
σxx σxy

σyx σyy

)
·
(
Ex

Ey

)
, (2.9)

(
Ex

Ey

)
=

(
ρxx ρxy
ρyx ρyy

)
·
(
jx
jy

)
. (2.10)
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In isotropic systems - and the systems we use are isotropic - the components
of the resistivity tensor are symmetric: ρxx = ρyy and ρxy = −ρyx and it holds
σ = ρ−1.

2.2 Hall Resistivity and longitudinal Resistivity

Now we apply the Drude model to calculate carrier transport through a Hall bar.
A Hall bar is a piece of conducting material - especially in our case a GaAs-
AlGaAs heterostructure hosting a 2DES - shaped as shown in figure 2.2.

Figure 2.2: In the upper part the sketch of a heterostructure hosting the 2DES
and shaped as a Hall bar is shown. The lower panel demonstrates the geometry
for longitudinal and Hall resistance measurements: The current is driven from
contact 1 to 2 while ρxx is measured between the contacts 3 and 4, and ρxy is
measured between the contacts 4 and 5.

A current flowing from contact 1 to contact 2 passes through a rectangular
area of the width W and the length L. At the corners of this area are the
contacts 3, 4, and 5 as voltage probes. If there is a current j⃗ = (jx, 0) flowing
in x-direction through the sample, a small magnetic field B perpendicular to the
2DES will deflect the electrons due to the Lorentz force. As a consequence, an
electric field in the y-direction will be set up, compensating the deflection. This
situation could be described by:

m∗ d

dt
v⃗D +

m∗

τ
v⃗D = e(E⃗ + v⃗D × B⃗). (2.11)
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Exercise 2: Since we measure currents and voltages we need expressions
for the Hall voltage Uxy (U45 in the geometry given in figure 2.2) and the
longitudinal voltage Uxx (U34 according to figure 2.2) as a function of the
applied magnetic field B. (Start from equation 2.11 and assume the sta-
tionary case d

dt
v⃗D = 0. Remember that we are in a two-dimensional sys-

tem, remember that the microscopic current I flows only in x-direction,
and remember further that the magnetic field B is perpendicular to the
2DES. Set up an equation E⃗ = r · j⃗ and compare the components of the
tensor r with the components of the resistivity tensor ρ in equation 2.10.)
Discuss the results and explain how the density ns and the mobility µ
can be extracted from measurements of Uxy vs. B and Uxx vs. B.)

Since the electrons move on cyclotron orbits, the cyclotron radius Rc and the
cyclotron frequency ωc are also of interest:

ωc =
eB

m∗ , (2.12)

Rc =
vF
ωc

=
ℏ
√
2πns

eB
(2.13)

The Drude model is only valid for small magnetic fields. At higher magnetic
fields the classical model will break down and we have to use quantum mechanics
to describe our 2DES properly. A hand-waving argument whether we can calcu-
late classically or not is the following: Assume, that there will be no transport
due to drifting charge carriers if an electron can turn a lot of cyclotron orbit
before it is scattered. Thus, we have to compare the mean free path l with the
cyclotron orbit.

Exercise 3: Check, up to which magnetic field you can use the Drude
model to describe transport through a sample with µ = 1× 106 cm2/Vs.

To describe the system more accurately in the case we apply higher magnetic
fields, we start with the Schrödinger equation:(

Ei +
1

2m∗ (iℏ∇+ eA⃗)2 + U(y)

)
Ψ(x, y) = EΨ(x, y). (2.14)

Ei is the sub-band energy (quantized in z-direction) and A⃗ is the magnetic
vector potential. The potential U(y) accounts of the geometric restriction due to
the Hall bar. Assuming at a first glance U(y) = 0 inside the Hall bar we achieve
the energies:

En = Ei + (n+
1

2
)ℏωc with n = 0, 1, 2, ... (2.15)

as eigenvalues of equation 2.14. These equidistant energy levels are called
Landau levels. So, the density of states D(E) is no longer constant, but a series
of delta-like peaks. All states condense now on these Landau levels. In real
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systems these peaks are slightly broadened due to crystal defects and incorporated
impurities. As a consequence, the longitudinal resistance ρxx in no longer constant
but drops to zero periodically. These oscillations are called Shubnikov-de Haas
(SdH) oscillations. Also the Hall resistance ρxy shows no longer a linear behavior,
but is a series of plateaus with well-defined resistance of 1

i
· h
2e2

, i = 1, 2, 3, ... as
shown in figure 2.3.

Figure 2.3: Longitudinal resistance ρxx and Hall resistance ρxy as a function of
magnetic field B. At fields greater 0.7T SdH oscillations in ρxx and Hall plateaus
in ρxy can clearly be observed.

This is called the Quantum Hall effect. These and related phenomena are very
interesting and until today topics of a lot of research projects. But going into
detail on this topic is far beyond this practical exercise and will be omitted here.
Nevertheless, the periodicity of the SdH oscillations in 1/B is another method to
determine the electron density in the 2DES:

´

ns = 2
e

h
· 1

1
Bi+1

− 1
Bi

(2.16)

with i and i+ 1 are the numbers of two subsequent SdH minima.

2.3 Transport through a structured Hall bar

After this short excursion in the Quantum Hall regime, we come back to our
classical ideas of magneto transport. We can ask ourselves now what happens if
we are using not a bare Hall bar as shown in figure 2.2 but a structured hall bar
with non-conducting barriers3, as shown in figure 2.4.

3In general these barriers are created by etching grooves in the Hall bar to remove the
electrons.
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Figure 2.4: Hall bar structured with different types of non-conducting barriers:
a) Linearly arranged stripes with length b and period a. b) Linearly arranged
antidots with diameter d and period a. c) Antidots arranged in a square lattice
with lattice constant a and diameter d.

If we apply a magnetic field B such, that the cyclotron radius Rc equals half
the period a, an electron can move around this barrier. Hence, electrons are
pinned and do not contribute to transport until they are scattered. As a conse-
quence the longitudinal resistivity ρxx(B) will show a more or less pronounced
peak. A more general condition for seeing these so-called commensurability os-
cillations for the structure shown in figure 2.4 a is:

2Rc =
i

j
· a. (2.17)

The peak at Bij corresponding to i = j = 1 is called fundamental peak, peaks
with i > 1, j = 1 are called harmonics, while peaks with j > 1, i = 1 are called
subharmonics.

Exercise 4: Discuss equation 2.17: how does the pinned electron orbits
look like for i = 1, j = 2, 3, ..., for j = 1, i = 2, 3, ... and for the general
case i, j = 1, 2, 3, ...? (The electrons are quasi reflected like billiard balls
when they touch the edge of the sample). Draw these orbits. For what i
and j will the pinning break down? How will the carrier density ns and
the mobility µ influence the commensurability oscillations? How will the
exact geometry at a given period a influence ρxx(B)? (Consider the ratio
c/b with the barrier length b and the contact width c = a− b.) How does
the situation change for the structures shown in figure 2.4 b and 2.4 c?

2.4 Adjusting the carrier density

As we have seen, the electron density ns and the mobility µ are important param-
eters in magneto transport measurements. So it might be useful to tune at least
ns. Beside a gate electrode on top of the device,4 an effect related to the doping
mechanism can also be used to tune the sheet carrier density. During growth of
a small part of the AlGaAs layer Si atoms are incorporated on Ga sites in the
lattice. Since Si has 4 valence electrons, and Ga has only 3, the forth valence

4Our samples are without this feature
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electron of the Si atom does not contribute to the crystal binding and is able to
transport charge through the sample. But not all Si atoms on Ga sites behave
equally: normally electrons from Si atoms have an energy very close to the con-
duction band and hence can be thermally activated even at low temperatures to
the conduction band. But there is a second set of Si atoms on Ga sites, where
the Si atoms disturb locally the crystal lattice a little bit and, as a consequence,
the corresponding electrons are bound even stronger to the Si atoms. It is not
possible to thermally activate these electrons at low temperatures, but it is possi-
ble to activate them due to photon absorption. Once activated in the conduction
band they contribute to transport.

Figure 2.5: Two possible configurations for Si atom incorporation in (001)-GaAs.
a) ’normal’ configuration, Si acts as flat donor. b) asymmetrical configuration, Si
acts as DX-center. In this case it is necessary to illuminate the sample to push
the electron in the conduction band. (Picture taken from: Chadi et al. Phys.
Rev. Lett. 61(7), 873 (1988).)

This effect is irreversible and is called persistent photo conductivity (PPC).
So, we have the possibility to tune the electron density ns of the sample simply
by illuminating it. The carriers remain in the conduction band until the sample
is heated up to a temperature of ≈150K. Figure 2.5 shows schematically the two
possible configurations of Si atoms on Ga-sites in AlGaAs.
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3. What we measure and how we do it

3.1 Ingredients

First of all, we need the sample, this means a structured Hall bar. Fortunately,
this work is done. We used optical lithography and wet chemical etching to prepare
the Hall bar itself, E-Beam lithography and RIE to structure the Hall bar and
indium alloying to provide ohmic contacts to the 2DES. After this we soldered
gold bond wires with non-tremulous hands to mount the processed sample at a
DIL8 housing with eight contacts. The Hall bar has a length of 970µm and a
width of 200µm. The result is shown in figure 3.1.

Figure 3.1: A sample prepared for measuring. a) Photograph of the real device
completely contacted and mounted. b) Schematic to show connections from the
semiconductor to the DIL8 housing. The pins of the DIL8 socket are numbered
counter-clockwise from 1 to 8, beginning at the lower left. The left side of the
socket is marked.

Exercise 5: Explain all expressions in italic in the text above. If some of
these expressions are unknown, look them up in standard literature on
semiconductor processing techniques.

The second most important thing we need is a magnetic field of at least 1T.
The most convenient way to reach these fields is the use of superconducting
magnets. In our setup a superconducting NbTi wire is wound up to a coil to
generate fields up to 5T. The point is that this kind of magnets only works at
liquid He temperature of 4.2K. But—and here you should remember footnote 2
—that’s o.k. The only restriction arising therefrom is, that we have no possibility
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to handle the sample directly and that we need a cryoproofed sample holder for
this.

Figure 3.2: Sample holder. 1) Supporting rod, 2) Coaxial cables, 3) DIL8 sockets,
4) LED for illumination, 5) Sample with Hall bar, and 6) Si diode for temperature
measurements.

In our case, a long stainless steel rod with two DIL8 sockets mounted at the
end as shown in figure 3.2 is used. It fits exactly in the bore of the magnet such
that the sample is centered in the homogeneous magnetic field. In addition, a
Si diode as temperature sensor and a LED are fitted to the sample holder. The
electrical contacts to the DIL8 sockets are coaxial cables: the inner leads are
connected directly to the DIL8 socket while the outer shielding of all coax cables
are connected together at the cold side as schematically shown in figure 3.3.

Figure 3.3: Connecting scheme. At sample side, all shields of the coax cables are
connected together. In the connector box there is a female coaxial connector and
a switch to short inner and outer lead for each connection to the sample.

At room temperature side all coax cable ends up in female coax connectors
mounted in a switch box, with both inner and outer leads isolated against ground.
A switch determines whether a particular coax connector at the front is active or
not, another switch short circuits the inner and outer lead. Since we drive only
small currents through the sample (typically 200 nA in our case), we expect only
small voltages to measure. A standard technique to do this is to use a ’Lock-In
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amplifier’ (short: Lock-In). This is a very sensitive instrument, which amplifies
only signals with a certain choosable frequency f0 and ignores all other signals.

Exercise 6: Calculate the expected longitudinal voltage Uxx in 150µm a
wide Hall bar with a distance between the voltage probing contacts of
750µm for B = 0T and a current I = 200 nA. Assume that the used
2DES has a sheet carrier concentration of ns = 2.0 × 1011 cm−2 and a
mobility of µ = 1.0×106 cm2/Vs. Why are we using a Lock-In instead of a
’simple’ Micro-Voltmeter? How does a Lock-In work in principle? Since
nearly every Lock-In has a built-in oscillator to generate the reference
signal needed, can we use the Lock-In not only for measuring but also
as current source? How must the sample be connected? (The Lock-In
provides the oscillator signal as a voltage adjustable in frequency and
amplitude (0V to 2V!) between the outer and inner lead of a coaxial
connector. A Lock-In is also able to measure two voltages between inner
and outer leads of two coax connectors and to calculate the difference
between these two voltages.)

3.2 Behavior in the lab

Before you start your measurements, you should keep in mind a few important
things which make your life easier and safer (and certainly also your tutor’s life):

• Working in a lab means having a maximum of discipline. This includes not
to eat or drink, not to smoke, and to keep your fingers away from equipment
of other people’s setups.

• Do not use any equipment unless you are allowed to do so and unless you
have been shown how to use it.

• Be extremely careful handling cryogenic liquids especially He. The most
known dangers hereby are frozen skin or limbs, damaged equipment and
severe injuries due to exploding vessels, and the risk of suffocation.

• Keep also in mind, that the energy stored in a superconducting coil mag-
netized to 1T is enormous. Hence be aware of the breakdown of the super-
conductivity (quench) since in this case a lot of liquid He will be evaporated
at once!
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3.3 Task to do

Now we have enough background knowledge about a 2DES, a Hall bar and the
theory of magneto transport experiments, as well as we have some basic technical
information about the used equipment. So, let us begin with the measurements.

1. Explain in detail the equipment in the lab (e.g. Lock-In, cryostat, power
supply, He handling system and Dewar, ...) and the actions to take in the
case of emergency.

2. Put the mounted sample with a Hall bar in the sample holder (do not forget
the LED!) and cool down the magnet and the sample to 4.2K (Since this
is a very critical process, do it only together with your tutor).

3. When the magnet and the sample are cold, measure the unilluminated
sample. Do this by taking ρxx and ρxy as a function of B. Do not use
higher fields than 4.5T and drive a current of max. 200 nA through the
sample. Choose the appropriate settings of the Lock-In (gain, time constant,
resolution, etc.)! What can you observe?

4. Repeat the measurement after illuminating the sample (60sec,1 mA current
through LED). Do you see any changes? If yes, what is the reason?

5. Repeat the measurement after cooling down the sample to 1.4K. What has
changed now?

6. Repeat the measurement at a very slow ramp rate to observe commensura-
bility oscillations due to the linearly arranged stripes (see Fig. 2.4a). Assign
the observed features to the fundamental, harmonics or sub-harmonics and
calculate therefrom the period a.

7. After finishing all measurements you planned to do, pull out the magnet
(together with your tutor, for sure), switch off the power supply and put
the sample back in the appropriate case.

8. Collect all your personal things and check if you have all the data necessary
for discussing your results.

3.4 Discussion of the results

Discuss your results critically. Calculate the electron density ns and the mobility
µ for all experiments performed. Do you really observe what you expected? Are
the peaks at the correct position according to the given device geometry? If not,
what might be the reason therefore? How many peaks can you resolve? What
should be changed to achieve higher resolution? What might be the limiting
factor? What can you deduce from the line-width of the peaks? What determines
the height of the resistance maxima?
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5. Useful diagrams

Figure 5.1: Magnetic field as function of current through the superconducting
magnet. The gray shaded part marks an area of unsafe operation (quench).

Figure 5.2: Calibration of the Si diode as temperature sensor. The inset is a
closer look to the relevant temperature range from 1K to 30K.
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