Fundamentals of Experimental Physics I
Module PH9101
Module version of WS 2021/2
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | |||||||
---|---|---|---|---|---|---|---|
WS 2022/3 | WS 2021/2 | WS 2020/1 | WS 2019/20 | WS 2018/9 | WS 2017/8 | WS 2015/6 | WS 2010/1 |
Basic Information
PH9101 is a semester module in German language at Bachelor’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
- Physics Modules for Students of Education
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
120 h | 60 h | 4 CP |
Responsible coordinator of the module PH9101 in the version of WS 2021/2 was Günther Woehlke.
Content, Learning Outcome and Preconditions
Content
Mechanics:
- Introduction, units, error in measurement
- coordinate systems, kinematics
- free fall, motion in 3D, circular motion, superposition of motions, Newton's laws, momentum, inertial and gravitational mass
- pendulum, superposition of forces, frictional force, centripetal force, spring force, gravitational force, reference system, pseudo forces
Hydrostatics and hydrodynamics:
- liquids and gases, pressure, Pascal's principle, compression of liquids and gases
- floatation, surface tension, flowing liquids, continuity equation, Bernoulli equation, Torricelli's law
- real liquids, viscosity, pipe flow of a real liquid, Hagen-Poiseuille
Thermodynamics:
- fundamentals, amount of substance, temperature, thermal energy, ideal gas, velocity distribution, Brownian motion, change of state
- first law of thermodynamics, isotherm, adiabatic curve, isochore
- thermal engines, Carnot cycle, efficiency, Stirling engine, heat generation, heat pump, Otto engine
- reversible and irreversible processes, entropy, second law of thermodynamics, temperature zero-point
- real gases, phase diagrams, phase changes
- heat transport, convection, heat transfer, thermic conduction, heat transmission, heat radiation
Learning Outcome
After the successful participation in the module the student is able to:
- reflect fundamental physical quantities and approaches in classical mechanics
- apply and solve fundamental equations of practical problems in mechanics
- describe the fundamentals of hydrostatics and hydrodynamics
- handle elementary problems quantitatively in mechanics of fluids
- explain the terms of thermodynamics and the laws of thermodynamics
- deal with thermodynamic cycles and thermal engines
- comprehend the properties of real gases and the phenomena of heat transfer
Preconditions
none
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VO | 2 | Fundamentals of Experimental Physics 1 | Resconi, E. |
Wed, 15:00–16:30, 1200 |
|
UE | 2 | Exercise to Fundamentals of Experimental Physics 1 | Glauch, T. | dates in groups |
Learning and Teaching Methods
Lecture, presentations, videos, demonstration of experiments
Media
Transparencies are downloadable from the lecture web page
Literature
- Paul A. Tipler: "Physik", Spektrum Akademischer Verlag. Heidelberg
- Halliday, Resnick, Walker: "Halliday Physik - Bachelor Edition", Wiley-VCH Verlag
- P. Dobrinski, G. Krakau, A. Vogel: "Physik für Ingenieure", Teubner Verlag.