Fundamentals of Experimental Physics I
Module PH9101
Module version of WS 2021/2
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | |||||||
---|---|---|---|---|---|---|---|
WS 2022/3 | WS 2021/2 | WS 2020/1 | WS 2019/20 | WS 2018/9 | WS 2017/8 | WS 2015/6 | WS 2010/1 |
Basic Information
PH9101 is a semester module in German language at Bachelor’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
- Physics Modules for Students of Education
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
120 h | 60 h | 4 CP |
Responsible coordinator of the module PH9101 in the version of WS 2021/2 was Günther Woehlke.
Content, Learning Outcome and Preconditions
Content
Mechanics:
- Introduction, units, error in measurement
- coordinate systems, kinematics
- free fall, motion in 3D, circular motion, superposition of motions, Newton's laws, momentum, inertial and gravitational mass
- pendulum, superposition of forces, frictional force, centripetal force, spring force, gravitational force, reference system, pseudo forces
Hydrostatics and hydrodynamics:
- liquids and gases, pressure, Pascal's principle, compression of liquids and gases
- floatation, surface tension, flowing liquids, continuity equation, Bernoulli equation, Torricelli's law
- real liquids, viscosity, pipe flow of a real liquid, Hagen-Poiseuille
Thermodynamics:
- fundamentals, amount of substance, temperature, thermal energy, ideal gas, velocity distribution, Brownian motion, change of state
- first law of thermodynamics, isotherm, adiabatic curve, isochore
- thermal engines, Carnot cycle, efficiency, Stirling engine, heat generation, heat pump, Otto engine
- reversible and irreversible processes, entropy, second law of thermodynamics, temperature zero-point
- real gases, phase diagrams, phase changes
- heat transport, convection, heat transfer, thermic conduction, heat transmission, heat radiation
Learning Outcome
After the successful participation in the module the student is able to:
- reflect fundamental physical quantities and approaches in classical mechanics
- apply and solve fundamental equations of practical problems in mechanics
- describe the fundamentals of hydrostatics and hydrodynamics
- handle elementary problems quantitatively in mechanics of fluids
- explain the terms of thermodynamics and the laws of thermodynamics
- deal with thermodynamic cycles and thermal engines
- comprehend the properties of real gases and the phenomena of heat transfer
Preconditions
none
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VU | 4 | Fundamentals of Experimental Physics 1 | Iglev, H. |
Wed, 15:00–16:30, 1200 and dates in groups |
Learning and Teaching Methods
Lecture, presentations, videos, demonstration of experiments
Media
Transparencies are downloadable from the lecture web page
Literature
- Paul A. Tipler: "Physik", Spektrum Akademischer Verlag. Heidelberg
- Halliday, Resnick, Walker: "Halliday Physik - Bachelor Edition", Wiley-VCH Verlag
- P. Dobrinski, G. Krakau, A. Vogel: "Physik für Ingenieure", Teubner Verlag.
Module Exam
Description of exams and course work
There will be a written exam of 90 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using calculation problems and comprehension questions.
Current exam dates
Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.
Title | |||
---|---|---|---|
Time | Location | Info | Registration |
Fundamentals of Experimental Physics I | |||
Tue, 2024-02-27, 11:00 till 12:30 | 2300 2300 |
till 2024-01-15 (cancelation of registration till 2024-02-20) | |
Tue, 2024-04-02, 13:30 till 15:00 | 0602 0602 |
till 2024-03-25 (cancelation of registration till 2024-03-26) |