# Nonrelativistic Effective Field Theories at Zero and Finite Temperature

## Module PH2302

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

### Basic Information

PH2302 is a semester module in English language at which is offered in winter semester.

This Module is included in the following catalogues within the study programs in physics.

- Specific catalogue of special courses for nuclear, particle, and astrophysics
- Complementary catalogue of special courses for condensed matter physics
- Complementary catalogue of special courses for Biophysics
- Complementary catalogue of special courses for Applied and Engineering Physics
- Specialization Modules in Elite-Master Program Theoretical and Mathematical Physics (TMP)

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workload | Contact hours | Credits (ECTS) |
---|---|---|

300 h | 90 h | 10 CP |

Responsible coordinator of the module PH2302 is Nora Brambilla.

### Content, Learning Outcome and Preconditions

#### Content

--Introduction to Effective Field Theories

--Nonrelativistic effective Field Theories

--Heavy Quark Effective Theories

--Nonrelativistic QuantumElectrodynamics (QED)

-- Nonrelativistic QuantumChromodynamics (QCD)

--potential Nonrelativistic QED

--potential Nonrelativistic QCD

--Field theory at finite Temperature

--Effective field theories of QED at finite Temperature

--Effective field theories of QCD at finite Temperature

--Nonrelativistic effective field theories at finite Temperature

#### Learning Outcome

After successful completion of the module the students are able to:

-understand how to describe a non relativistic bound system

in atomic and molecular physics, particle and nuclear physics,

astroparticle physics, condensed matter

-understand how to obtain quantum mechanism in a controlled and

systematic way from Field Theory

-calculate the properties of nonrelativistic bound states like

spectra, transitions and decays from the underlying field theory

-understand how quantum hot matter behaves and what are the field

theoretical methods to address it

-understand how to formulate an effective field theory of quantum

field theory at finite temperature

-understand how to treat non relativistic bound states evolving in a

hot medium in a quantum description.

#### Preconditions

The students should have knowledge of quantum mechanism (Quantum

Mechanics I and Quantum Mechanics II) and knowledge of Quantum Field Theories.

### Courses, Learning and Teaching Methods and Literature

#### Courses and Schedule

Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|

VO | 4 | Nonrelativistic Effective Field Theories at Zero and Finite Temperature | Brambilla, N. |
Tue, 10:00–12:00, virtuell Wed, 08:30–10:00, virtuell |
eLearning documents |

UE | 2 | Exercise to Nonrelativistic Effective Field Theories at Zero and Finite Temperature |
Mohapatra, A.
Qerimi, G.
Vander Griend, P.
Responsible/Coordination: Brambilla, N. |
dates in groups |

#### Learning and Teaching Methods

The lecture will be performed at the (virtual) blackboard.

All the details of the calculations will be explained and the

students will have the possibility to ask questions both about the details

of the calculation and about the general conceptual framework.

A blog of the lecture will be developed, with all the topics

discussed in the lecture and specific reference to chapter of books and

articles for each specific subject.

The lecture will be complemented by exercises that will allow the

student to deepen their understanding and they knowledge of the subject. The exercises will

be correct in the exercises lectures and detailed solutions will be posted on the

lecture web site after that.

We encourage the students to solve the exercises in group as it is

more pedagogical.

On TUM moodle there are ways to realise even virtually.

#### Media

Blackboard presentation (on line)

slides presentation

videos

web page

interactive virtual meetings

#### Literature

A. Manohar and M. Wise, Heavy Quark Physics, Cambridge University Press, 2009.

N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. of Mod. Phys. 77 (2005) 1423, e-Print: hep-ph/0410047.

J. Kapusta and C. Gale, Finite Temperature Field Theory, Cambridge University Press, 2009.

M. Le Bellac, Thermal Field Theory, Cambridge University Press, 1996.

### Module Exam

#### Description of exams and course work

There will be a written exam of 90 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using calculation problems and comprehension questions.

For example an assignment in the exam might be:

- Calculation of non relativistic effective field theory Lagrangian of a given physical example
- Calculation of the electric dipole and magnetic dipole transitions in a given physical example
- Calculation of nonrelativistic bound state propagators
- Calculation of specific matching coefficients
- Density matrix at finite temperature
- Calculation of energy levels at finite temperature

In the exam no learning aids are permitted.

Participation in the exercise classes is strongly recommended since the exercises prepare for the problems of the exam and rehearse the specific competencies.

There will be a bonus (one intermediate stepping of "0,3" to the better grade) on passed module exams (4,3 is not upgraded to 4,0). The bonus is applicable to the exam period directly following the lecture period (not to the exam repetition) and subject to the condition that the student passes the mid-term of Solution of at least 50% of the given exercises

#### Exam Repetition

The exam may be repeated at the end of the semester.