Nano- and Optomechanics
Module PH2255
Module version of WS 2017/8
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | |||||
---|---|---|---|---|---|
WS 2022/3 | WS 2021/2 | WS 2020/1 | WS 2019/20 | WS 2018/9 | WS 2017/8 |
Basic Information
PH2255 is a semester module in English language at which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
- Specific catalogue of special courses for Applied and Engineering Physics
- Complementary catalogue of special courses for condensed matter physics
- Complementary catalogue of special courses for nuclear, particle, and astrophysics
- Complementary catalogue of special courses for Biophysics
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 60 h | 5 CP |
Responsible coordinator of the module PH2255 in the version of WS 2017/8 was Menno Poot.
Content, Learning Outcome and Preconditions
Content
Nano- and optomechanics is a rapidly developing field where mechanical resonators - ranging from the nanoscale to km-sized gravitational-wave detectors - are studied with extremely sensitive methods. In this course we will study some of the most intriguing aspects of this topic, including mechanics at the nanoscale, NEMS sensors, synchronization, and quantum-limited measurements. The course consists of a lecture and exercises and will be given in English.
Learning Outcome
After successful participation in the module, the student is able to:
- Name different designs of mechanical resonators, and of NEMS and optomechanical detectors. Tell what their main pros and cons are.
- Illustrate the difference between bottom-up and top-down devices.
- Recall the optomechanical Hamiltonian and the derivation of its limiting cases. Evaluate the outcome with different quantum mechanical states.
- Classify different damping mechanism in mechanical devices and relate this to force noise and temperature.
- Select the right material(s) for a resonator+detector design, based on an understanding of the fabrication techniques and material properties
- Explain the working principle of different detector schemes. Distinguish its detection- and back action mechanisms
- Model the interaction between a detector and the resonator. Discover how this leads to the standard quantum limit (SQL), quantum non-demolition (QND) measurements, and optomechanically-induced transparency (OMIT).
- Outline different cooling mechanism and evaluate the final temperature of a cooling experiment.
- Analyze the properties of simple (e.g. string, beam) and more complex (e.g. H) mechanical structures.
- Assess the feasibility of a given design of an optomechanical sensor for small and large motion amplitudes.
- Plan an experiment to measure one of the effects discussed in the module.
Preconditions
No preconditions in addition to the requirements for the Master’s program in Physics.
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VI | 4 | Nano- and Optomechanics | Poot, M. |
Mon, 12:00–14:00, PH II 227 Thu, 16:00–18:00, PH II 227 |
eLearning |
Learning and Teaching Methods
- Lectures with a beamer (copies will be made available),
- Lectures with blackboard
- Discussion
- Excercise classes
Media
Presentation files of the lectures, problem sheets
Literature
The lecture is based on the contents of two review articles:
- M. Poot and H. van der Zant, "Mechanical systems in the quantum regime", Physics Reports 511 (2012) 273–335
- M. Aspelmeyer et. al, "Cavity optomechanics", Rev. Mod. Phys. 86 (2014) 1391-1452
Module Exam
Description of exams and course work
There will be a written exam of 120 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using calculation problems and comprehension questions.
For example an assignment in the exam might be:
- Explain in your own words the Haus-Caves limit
- Calculate the temperature of a resonator with properties XY coupled to a dc SQUID with properties Z
Participation in the exercise classes is strongly recommended since the exercises prepare for the problems of the exam and rehearse the specific competencies.
Exam Repetition
The exam may be repeated at the end of the semester.