de | en

Nano- und Optomechanik
Nano- and Optomechanics

Modul PH2255

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Modulversion vom WS 2018/9 (aktuell)

Von dieser Modulbeschreibung gibt es historische Versionen. Eine Modulbeschreibung ist immer so lange gültig, bis sie von einer neuen abgelöst wird.

verfügbare Modulversionen
WS 2018/9WS 2017/8

Basisdaten

PH2255 ist ein Semestermodul in Englisch auf das im Wintersemester angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Allgemeiner Spezialfachkatalog Physik
  • Spezifischer Spezialfachkatalog Applied and Engineering Physics

Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
150 h 60 h 5 CP

Inhaltlich verantwortlich für das Modul PH2255 ist Menno Poot.

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

Nano- and optomechanics is a rapidly developing field where mechanical resonators - ranging from the nanoscale to km-sized gravitational-wave detectors - are studied with extremely sensitive methods. In this course we will study some of the most intriguing aspects of this topic, including mechanics at the nanoscale, NEMS sensors, synchronization, and quantum-limited measurements. The course consists of a lecture and exercises and will be given in English.

Lernergebnisse

After successful participation in the module, the student is able to:

  • Name different designs of mechanical resonators, and of NEMS and optomechanical detectors. Tell what their main pros and cons are.
  • Illustrate the difference between bottom-up and top-down devices.
  • Recall the optomechanical Hamiltonian and the derivation of its limiting cases. Evaluate the outcome with different quantum mechanical states.
  • Classify different damping mechanism in mechanical devices and relate this to force noise and temperature.
  • Select the right material(s) for a resonator+detector design, based on an understanding of the fabrication techniques and material properties
  • Explain the working principle of different detector schemes. Distinguish its detection- and back action mechanisms
  • Model the interaction between a detector and the resonator. Discover how this leads to the standard quantum limit (SQL), quantum non-demolition (QND) measurements, and optomechanically-induced transparency (OMIT).
  • Outline different cooling mechanism and evaluate the final temperature of a cooling experiment.
  • Analyze the properties of simple (e.g. string, beam) and more complex (e.g. H) mechanical structures.
  • Assess the feasibility of a given design of an optomechanical sensor for small and large motion amplitudes.
  • Plan an experiment to measure one of the effects discussed in the module.

Voraussetzungen

No preconditions in addition to the requirements for the Master’s program in Physics.

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)Termine
VO 3 Nano- and Optomechanics Poot, M. Mo, 12:00–14:00, PH 3344
Do, 16:00–17:00, PH II 227
sowie einzelne oder verschobene Termine
UE 1 Exercise to Nano- and Optomechanics Poot, M. Termine in Gruppen

Lern- und Lehrmethoden

This Module consists of a lecture and exercise classes. During the lectures, the teaching and learning content is presented and explained in a didactical, structured, and comprehensive form. This includes basic background knowledge and an overview of current topics from the very broad research field. The former consists of theoretical tools, as well as an analysis of common experimental methods. Universal concepts are emphasized between different topics. Crucial facts are conveyed by involving the students in scientific discussions to develop their intellectual power and to stimulate their analytic thinking on physics problems.

In the exercise class, the concepts learned in the lectures are practiced and deepened. Problems will either be solved individually with guidance from the tutor, in small groups, or plenary with input from all participants. The results are discussed during the tutorial. Additional problems for self study are available and in one of the classes, we will learn to use a finite-element program to simulate the mechanics of nanomechanical devices.

Regular attendance of the lectures and exercise classes is highly recommended.

    Medienformen

    Lectures with blackboard work and beamer presentation, presentation files of the lecture, problem sheets. Hands-on tutorial for finite-element-modeling using COMSOL.

    Literatur

    The lecture is based on the contents of two review articles:

    • M. Poot and H. van der Zant, "Mechanical systems in the quantum regime", Physics Reports 511 (2012) 273–335
    • M. Aspelmeyer et. al, "Cavity optomechanics", Rev. Mod. Phys. 86 (2014) 1391-1452

    Modulprüfung

    Beschreibung der Prüfungs- und Studienleistungen

    In the exam at the end of the semester, the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using calculation problems and comprehension questions. Depending on the number of students attending the lecture, there will either be an oral (20 minutes) or a written (90 minutes) exam. This will be communicated in the second week of the lecture.

    For example an assignment in the exam might be:

    • Explain in your own words the Haus-Caves limit
    • Calculate the temperature of a resonator with properties XY coupled to a dc SQUID with properties Z

    Wiederholbarkeit

    Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.

    Aktuell zugeordnete Prüfungstermine

    Derzeit sind in TUMonline die folgenden Prüfungstermine angelegt. Bitte beachten Sie neben den oben stehenden allgemeinen Hinweisen auch stets aktuelle Ankündigungen während der Lehrveranstaltungen.

    Titel
    ZeitOrtInfoAnmeldung
    Prüfung zu Nano- und Optomechanik
    Mo, 4.2.2019 Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin vor So, 24.03.2019. // Dummy date. Contact examiner for individual appointment. Registration for exam date before Sun, 2019-03-24. bis 15.1.2019 (Abmeldung bis 3.2.2019)
    Di, 26.3.2019 Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin von Mo, 25.03.2019 bis Sa, 27.04.2019. // Dummy date. Contact examiner for individual appointment. Registration for exam date from Mon, 25.03.2019 till Sat, 27.04.2019. bis 25.3.2019
    Nach oben