Effektive Feldtheorien
Effective Field Theories

Modul PH2245

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Basisdaten

PH2245 ist ein Semestermodul in auf das unregelmäßig angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Spezifischer Spezialfachkatalog Kern-, Teilchen- und Astrophysik

Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
150 h  h 5 CP

Inhaltlich verantwortlich für das Modul PH2245 ist Antonio Vairo.

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

The lecture course provides an introduction to effective field theories (EFTs) and renormalization techniques with applications ranging from high energy to atomic physics. The course consists in three parts: (1) basics of EFTs and renormalization group; (2) introduction to the Heavy Quark Effective Theory (HQET); (3) non-relativistic EFTs and applications to atomic physics.

Lernergebnisse

The student will learn how to build effective field theories from identifying the relevant degrees of freedom and symmetries to renormalize them.  The basics will be broad and applicable to all effective field theories. Some specific EFTs will be worked out in more detail.

Voraussetzungen

Keine Vorkenntnisse nötig, die über die Zulassungsvoraussetzungen zum Masterstudium hinausgehen.

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)Termine
VO 2 Effective Field Theories Vairo, A. Donnerstag, 08:30–10:00

Lern- und Lehrmethoden

Lectures will be delivered on the blackboard. Literaure and further bibliographycal material can be found on the webpage of the course.

Medienformen

Links to the literature and a detailed outline of the course is in

http://users.ph.tum.de/gu32tel/Lectures/WS16-17-EFT.html

Literatur

  • Principles of EFTs
    • Books:A. Dobado, A. Gomez-Nicola, A.L. Maroto, J.R. Pelaez, Effective Lagrangians for the Standard Model, Springer Verlag 1997
      S. Weinberg, The Quantum Theory of Fields Vol. II, Cambridge University Press 1996, Chapter 19
    • Review papers and lecture notes:A. Pich, Effective field theory, Les Houches 1997, Probing the standard model of particle interactions, Pt. 2* 949-1049, e-Print: hep-ph/9806303
      A.V. Manohar, Effective field theories, Schladming 1996, Perturbative and nonperturbative aspects of quantum field theory* 311-362, e-Print: hep-ph/9606222
      D.B. Kaplan, Effective field theories, 7th Summer School in Nuclear Physics Symmetries, Seattle, e-Print: nucl-th/9506035
      H. Georgi, Effective field theory, Ann.Rev.Nucl.Part.Sci.43:209-252,1993
      B.R. Holstein, Effective effective interactions, Eur.Phys.J.A18:227-230,2003
    • A founding paper:S. Weinberg, Phenomenological Lagrangians, Physica A96:327,1979
    • EFTs courses:School on Flavor Physics, Centro de Ciencias de Benasque (2008)
      Effective field theory course (2013) at MIT by Iain Stewart (with emphasis on SCET)

  • Heavy quark effective theory
  • Books:A.V. Manohar, M.B. Wise, Heavy quark physics, Cambridge University Press 2000
    • Review papers and lecture notes: M. Neubert, Heavy-quark symmetry, Phys.Rept.245:259-396,1994
      B. Grinstein, An introduction to heavy mesons, 6th Mexican School of Particles and Fields, Villahermosa, e-Print: hep-ph/9508227
      T. Mannel, Heavy-quark effective field theory, Rept.Prog.Phys.60:1113-1172,1997
    • Related papers:G.P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, K. Hornbostel, Improved nonrelativistic QCD for heavy quark physics, Phys.Rev.D46:4052-4067,1992, e-Print: hep-lat/9205007
      A.V. Manohar, The HQET/NRQCD Lagrangian to order α/m^3, Phys.Rev.D56:230-237,1997, e-Print: hep-ph/9701294
  • Applications to atomic physics
    • Related papers:W.E. Caswell, G.P. Lepage, Effective Lagrangians for bound state problems in QED, QCD, and other field theories, Phys.Lett.B167:437,1986
      A. Pineda, J. Soto, The Lamb shift in dimensional regularization, Phys.Lett.B420:391-396,1998, e-Print: hep-ph/9711292
      A. Pineda, J. Soto, Potential NRQED: the positronium case, Phys.Rev.D59:016005,1999, e-Print: hep-ph/9805424
      B.R. Holstein, Blue skies and effective interactions, American Journal of Physics 67:422,1999

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

In einer schriftlichen Prüfung von 60 Minuten Dauer wird das Erreichen der Lernergebnisse durch Verständnisfragen und Beispielaufgaben bewertet.

Die Prüfung kann in Übereinstimmung mit §12 (8) APSO auch mündlich abgehalten werden, in diesem Fall ist der Richtwert für die Prüfungsdauer 25 Minuten.

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.