Physik unter extremen Bedingungen
Extreme Conditions Physics

Modul PH2243

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Modulversion vom WS 2017/8 (aktuell)

Von dieser Modulbeschreibung gibt es historische Versionen. Eine Modulbeschreibung ist immer so lange gültig, bis sie von einer neuen abgelöst wird.

verfügbare Modulversionen
WS 2017/8WS 2016/7

Basisdaten

PH2243 ist ein Semestermodul in Deutsch oder Englisch auf Master-Niveau das im Wintersemester angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Allgemeiner Spezialfachkatalog Physik
  • Spezifischer Spezialfachkatalog Physik der kondensierten Materie

Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
150 h 60 h 5 CP

Inhaltlich verantwortlich für das Modul PH2243 ist Elena Hassinger.

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

In condensed matter physics, experiments at low temperature, high pressure and high magnetic field are widely used to elucidate the physical properties of a material. In this lecture, starting with He and going to modern unconventional superconductors, we will investigate the phase diagrams of various correlated materials. We will dig into the physics of the appearing groundstates which are induced by changes of temperature, pressure or field, with the aim to draw analogies between different systems. A part of the lecture will also deal with the technical aspects of how extreme conditions are produced in the laboratory. 

1) Low temperature

  • Properties of quantum liquids
  • Fermi liquid
  • Superfluidity in 3He and 4He
  • Two-fluid model
  • Bose Einstein condensation
  • Phase transitions
  • Unconventional superconductivity
  • Low temperature techniques

2) High pressure

  • Pressure-induced phase transitions
  • Quantum phase transitions
  • Phase diagrams of correlated electron systems
  • High pressure techniques

3) High magnetic field

  • High field techniques
  • Quantum oscillations
  • Field induced phase transitions

Lernergebnisse

After the successful participation at the module, the participants will be able to

-- draw correct phase diagrams of He and correlated electron systems

-- describe apparent phases and their remarkable physical properties

-- name and explain examples of current topics in condensed matter physics that are studied using extreme conditions

-- connect physical properties of a material to the relevant magnetic or electronic interactions

-- draw analogies between superfluidity and superconductivity

-- chose the appropriate techniques to conduct experiments in different extreme conditions having in mind limits, advantages and disadvantages of the technique

Voraussetzungen

Keine Vorkenntnisse nötig, die über die Zulassungsvoraussetzungen zum Masterstudium hinausgehen.

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)Termine
VO 2 Physik unter extremen Bedingungen Hassinger, E. Mi, 12:00–14:00, PH II 227
UE 1 Übung zu Physik unter extremen Bedingungen Hassinger, E. Termine in Gruppen

Lern- und Lehrmethoden

Lecture, beamer presentation, blackboard work, discussions, homework exercises, exercise discussion in groups, self studies, small presentations by participants

Medienformen

blackboard, powerpoint

Literatur

"Low temperature physics" by Christian Enss and Siegfried Hunklinger

"Matter and methods at low temperature" by Frank Pobell

"Superconductivity, Superfluids and Condensates" by James Annett

"High pressure physics" by John Loveday

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

Es findet eine mündliche Prüfung von etwa 25 Minuten Dauer statt. Darin wird das Erreichen der im Abschnitt Lernergebnisse dargestellten Kompetenzen mindestens in der dort angegebenen Erkenntnisstufe exemplarisch durch Verständnisfragen und Beispielrechnungen überprüft.

Prüfungsaufgabe könnte beispielsweise sein:

  • Zeichnen des Phasendiagrams eines korrelierten Elektronensystems und Erklärung der einzelnen Phasen.
  • Erklärung der physikalischen Eigenschaften von unkonventionellen Supraleitern mit Nennung und Erläuterung von Beispielen.
  • Begründete Auswahl der experimentellen Technik für ein gegebenes geplantes Experiment in extremen Bedingungen.

Die Teilnahme am Übungsbetrieb wird dringend empfohlen, da die Übungsaufgaben auf die in der Modulprüfung abgefragten Problemstellungen vorbereiten und somit die spezifischen Kompetenzen eingeübt werden.

Auf die Note einer bestandenen Modulprüfung in der Prüfungsperiode direkt im Anschluss an die Vorlesung (nicht auf die Wiederholungsprüfung) wird ein Bonus (eine Zwischennotenstufe "0,3" besser) gewährt (4,3 wird nicht auf 4,0 aufgewertet), wenn die/der Studierende die Mid-Term-Leistung bestanden hat, diese besteht aus aktive Teilnahme an der Übung mit regelmäßiger Vorstellung der Lösung

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.