de | en

Advances in Bottom-Up Approaches in Nanotechnology

Module PH2231

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of SS 2016

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

available module versions
SS 2017SS 2016

Basic Information

PH2231 is a semester module in English or German language at Master’s level which is offered irregular.

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
150 h 50 h 5 CP

Responsible coordinator of the module PH2231 in the version of SS 2016 was Anna Cattani-Scholz.

Content, Learning Outcome and Preconditions

Content

The lecture focus on the most significant advances in bottom-up approaches in nanotechnology tailored towards the fabrication of functional nano-devices and it is complementary to other lectures offered at the Walter Schottky Institut. Under the classification of bottom-up special attention is given to techniques—such as atomic layer deposition, sol–gel nanofabrication, molecular self-assembly, synthesis of nanocrystals and nanoparticles, and nanowire growth.
The lecture is organized in 5 compact modules (5 weeks, 2 lectures per week), each dealing with one specific nanofabrication technique or nanomaterial type. The course is devoted to achieve a fundamental understanding of the physical principles and potential applications of each method, with particular emphasis to the current need in semiconductor nanotechnology to developing novel fabrication techniques that can allow for atomic precision. To this end, current highlights in the literature on the application of such techniques towards the fabrication of novel and efficient functional nanostructured devices will be discussed.

Learning Outcome

After participation in the module the student will be able to: 1. understand the basics of the most commonly used bottom-up nanofabrication techniques; 2. evaluate the advantages and limitations of each method; 3. evaluate the importance of bottom-up approaches in creating nanoscaled structures/functional devices with the desired shapes and characteristics starting from molecular or atomic components; 4. understand recent technological breakthroughs in the field.

Preconditions

No special knowledge exceeding the admissibility conditions for the master studies required.

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

TypeSWSTitleLecturer(s)Dates
VO 2 Advances in Bottom-Up Approaches in Nanotechnology Cattani-Scholz, A. Marques Pereira, R. Wed, 09:00–11:00, WSI S101
Mon, 09:00–11:00, WSI S101

Learning and Teaching Methods

Lecture with group discussion, case studies from the literature.

Media

Lecture Material (Power Point Presentations)

Literature

“Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects”, Advances in Colloid and Interface Science 170, 2-27, 2012.
“25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications”, Adv. Mater. 26, 2137–2184, 2014.
“25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter-Century of Advances”, Adv. Mater. 25, 4986–5010, 2013.
“Nanocrystals for Electronics”, Annu. Rev. Chem. Biomol. Eng. 3, 287–311, 2012.

Module Exam

Description of exams and course work

In a written exam the learning outcome is tested using comprehension questions and sample problems.

In accordance with §12 (8) APSO the exam can be done as an oral exam. In this case the time duration is 25 minutes.

Top of page