Fortschritte beim Bottom-up-Ansatz in der Nanotechnologie
Advances in Bottom-Up Approaches in Nanotechnology

Modul PH2231

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Basisdaten

PH2231 ist ein Semestermodul in Englisch oder Deutsch auf Master-Niveau das unregelmäßig angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Allgemeiner Spezialfachkatalog Physik
  • Spezifischer Spezialfachkatalog Applied and Engineering Physics
  • Spezifischer Spezialfachkatalog Physik der kondensierten Materie

Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
150 h 50 h 5 CP

Inhaltlich verantwortlich für das Modul PH2231 ist Anna Cattani-Scholz.

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

The lecture focus on the most significant advances in bottom-up approaches in nanotechnology tailored towards the fabrication of functional nano-devices and it is complementary to other lectures offered at the Walter Schottky Institut. Under the classification of bottom-up special attention is given to techniques—such as atomic layer deposition, sol–gel nanofabrication, molecular self-assembly, synthesis of nanocrystals and nanoparticles, and nanowire growth.
The lecture is organized in 5 compact modules (5 weeks, 2 lectures per week), each dealing with one specific nanofabrication technique or nanomaterial type. The course is devoted to achieve a fundamental understanding of the physical principles and potential applications of each method, with particular emphasis to the current need in semiconductor nanotechnology to developing novel fabrication techniques that can allow for atomic precision. To this end, current highlights in the literature on the application of such techniques towards the fabrication of novel and efficient functional nanostructured devices will be discussed.

Lernergebnisse

After participation in the module the student will be able to: 1. understand the basics of the most commonly used bottom-up nanofabrication techniques; 2. evaluate the advantages and limitations of each method; 3. evaluate the importance of bottom-up approaches in creating nanoscaled structures/functional devices with the desired shapes and characteristics starting from molecular or atomic components; 4. understand recent technological breakthroughs in the field.

Voraussetzungen

Keine Vorkenntnisse nötig, die über die Zulassungsvoraussetzungen zum Masterstudium hinausgehen.

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)Termine
VO 2 Advances in Bottom-Up Approaches in Nanotechnology Cattani-Scholz, A. Marques Pereira, R. Montag, 09:00–11:00
Donnerstag, 09:00–11:15

Lern- und Lehrmethoden

Lecture with group discussion, case studies from the literature.

Medienformen

Lecture Material (Power Point Presentations)

Literatur

“Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects”, Advances in Colloid and Interface Science 170, 2-27, 2012.
“25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications”, Adv. Mater. 26, 2137–2184, 2014.
“25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter-Century of Advances”, Adv. Mater. 25, 4986–5010, 2013.
“Nanocrystals for Electronics”, Annu. Rev. Chem. Biomol. Eng. 3, 287–311, 2012.

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

In einer schriftlichen Prüfung wird das Erreichen der Lernergebnisse durch Verständnisfragen und Beispielaufgaben bewertet.

Die Prüfung kann in Übereinstimmung mit §12 (8) APSO auch mündlich abgehalten werden, in diesem Fall ist der Richtwert für die Prüfungsdauer 25 Minuten.

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.