Materials Physics on an Atomistic Scale 1
Module PH2218
Module version of SS 2015
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | ||||
---|---|---|---|---|
WS 2021/2 | WS 2020/1 | WS 2019/20 | WS 2018/9 | SS 2015 |
Basic Information
PH2218 is a semester module in German or English language at Master’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
- Specific catalogue of special courses for condensed matter physics
- Specific catalogue of special courses for Applied and Engineering Physics
- Complementary catalogue of special courses for nuclear, particle, and astrophysics
- Complementary catalogue of special courses for Biophysics
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 30 h | 5 CP |
Responsible coordinator of the module PH2218 in the version of SS 2015 was Winfried Petry.
Content, Learning Outcome and Preconditions
Content
This module is concerned with the arrangement and movement of atoms in solids. As these aspects determine to a large part the macroscopic properties of matter, their microscopical understanding is fundamental to, e.g., the tuning of materials for technological applications.
Going beyond the coverage of an introductory Solid State Physics course, in the first semester the following topics pertaining to the static arrangement of atoms in solids will be treated in detail:
- symmetries -- point groups, space groups, Bravais lattices, positions within the unit cell
- crystal structures -- elementary systems and compounds
- point defects
- aspects of order -- short-range and long-range order
- statistics and thermodynamics -- fundamental models for predicting observables from microscopic parameters
- phases and phase diagrams
For all the above points both a general description of the relevant concepts as well as a motivation by microscopic models will be given, but also a quantitative discussion of their realization in typical systems. In the following summer term the second part of the lecture will treat the dynamics of atoms in solids, that is, oscillatory (phonons) and diffusive dynamics, and their relevance for materials physics.
Learning Outcome
Upon successful completion of the module, students are able to
- list the main crystal structures and analyze them with respect to their symmetries
- understand and predict which structure a given system will assume
- to apply the concepts relevant for describing point defects and to understand their behaviour
- to apply simple statistical and thermodynamical models
- to read phase diagrams and to deduce thermodynamic aspects, as well as to predict the phase diagrams resulting from given microscopic parameters
- to have a feeling for the typical values of the physical quantities relevant for the atomic scale, such as distances and energies, and to understand their consequences
Generally, this modul intends to bring the students to a point where they can rationalize the results of theoretical or experimental investigations of pertinent aspects from the point of view of the present state of science, and thus to prepare them for original research.
Preconditions
No preconditions exceeding the admission requirements for the master degree program.
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VO | 2 | Materials Physics on an Atomistic Scale 1 | Leitner, M. |
Wed, 10:00–12:00, PH-Cont. C.3201 and singular or moved dates |
eLearning |
Learning and Teaching Methods
In the lecture, the learning content is presented by blackboard writing and verbal lecturing, with a detailed discussion of the treated phenomena. Here active contributions from the students (comprehension questions) are invited. To consolidate the content, private study of the provided lecture script is indicated.
Media
A lecture script will be provided, outlining the essential contents, but not superseding the detailed discussions given in the lecture.
Literature
Fundaments of solid-state physics:
- Neil W. Ashcroft, N. David Mermin: Solid State Physics
- H. Ibach, H. Lüth: Festkörperphysik
- Ch. Kittel: Introduction to Solid State Physics
- R. Gross, A. Marx: Festkörperphysik
- U. Rössler: Solid State Theory: An Introduction
Statistical physics:
- F. Schwabl: Statistische Mechanik
Materials physics:
- G. Gottstein: Physikalische Grundlagen der Metallkunde
- P. Haasen: Physikalische Metallkunde
classical solid-state chemistry:
- J. Maier: Festkörper - Fehler und Funktion
atomic aspects of solids:
- M. T. Dove: Structure and Dynamics: An Atomic View of Materials
specialized aspects:
- W. Borchardt-Ott: Crystallography. An Introduction
- R. J. D. Tilley: Defects in Solids
Module Exam
Description of exams and course work
In an oral exam the learning outcome is tested using comprehension questions and sample problems.
Remarks on associated module exams
The exam for this module can be taken together with the exam to the associated follow-up module PH2219: Materialphysik auf atomarer Skala 2 / Materials Physics on an Atomistic Scale 2 after the follwoing semester. In this case you need to register for both exams in the following semester.
Exam Repetition
The exam may be repeated at the end of the semester. There is a possibility to take the exam in the following semester.