Extragalactic Astrophysics
Module PH2206
Module version of WS 2018/9 (current)
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | |||
---|---|---|---|
WS 2018/9 | SS 2018 | SS 2017 | WS 2014/5 |
Basic Information
PH2206 is a semester module in English language at Master’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
- Specific catalogue of special courses for nuclear, particle, and astrophysics
- Complementary catalogue of special courses for condensed matter physics
- Complementary catalogue of special courses for Biophysics
- Complementary catalogue of special courses for Applied and Engineering Physics
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 60 h | 5 CP |
Responsible coordinator of the module PH2206 is Sherry Suyu.
Content, Learning Outcome and Preconditions
Content
The universe outside our Milky Way was recognised as such less than 100 years ago. Within less than a century extragalactic astrophysics has become a major research field. Major topics of extragalactic astrophysics are the description and physical understanding of galaxies, the clustering of galaxies in groups, galaxy clusters and large scale structure forming the cosmic web.
This module will describe our Milky Way as a galaxy and how it relates to other galaxies. The local environment of the Milky Way and the Andromeda nebula forming the Local Group and the relation to the nearest galaxy cluster, the Virgo cluster, will be described. Galaxy morphologies and how they relate to the star formation activity are further topics, which will lead to the global evolution of star formation and the evolution of galaxies. Major components of galaxy formation and evolution are the dark matter and the feedback processes. Active Galactic Nuclei, the supermassive black holes at the centers of galaxies, can influence the evolution of galaxies. As quasars these objects can be observed throughout the universe and represent beacons for the study of gas clouds and intergalactic gas. The extragalactic sky can be observed at many wavelengths and the most energetic events are typically extragalactic.
Learning Outcome
After successful completion of this module, the student is able to:
- describe the structure of the Milky Way
- describe galaxies as physical entities and understand their role in the universe
- identify active galaxies and explain their observational features
- explain how objects can be observed in the universe
Preconditions
No preconditions in addition to the requirements for the Master’s program in Physics.
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VO | 2 | Extragalactic Astrophysics | Leibundgut, B. Suyu, S. |
Fri, 12:00–14:00, PH 2271 |
|
UE | 2 | Exercise to Extragalactic Astrophysics |
Schuldt, S.
Responsible/Coordination: Suyu, S. |
Wed, 14:00–16:00 |
Learning and Teaching Methods
In classroom lectures the teaching and learning content is presented and explained in a didactical, structured, and comprehensive form. This includes basic knowledge as well as selected current topics from a very broad research field. Crucial facts are conveyed by involving the students in scientific discussions to develop their intellectual power and to stimulate their analytic thinking on astrophysics problems. Regular attendance of the lectures is therefore highly recommended.
The presentation of the learning content is enhanced by problem examples and calculations that the students should work on a voluntary basis. These examples are intended to deepen the students' understanding and to help their learning of the course material. They are discussed at the exercise sessions to aid the students’ comprehension of the subject.
The examples as well as regular self-study of personal notes from the lectures and of textbooks are an important part of the learning process by the students. Such post-processing and practising of the teaching content is indispensable to achieve the intended learning results that the students develop the ability of explaining and applying the learned knowledge independently.
Media
PowerPoint presentation, blackboard, discussions, printed hand-outs, post-lecture PDFs, lab visit, videos, textbook, complementary literature, exercises in individual and group work, practice sheets
Literature
- P. Schneider: Extragalactic Astrophysics and Cosmology: An Introduction, Springer, (2010)
- B.W. Carroll & D.A. Ostlie: An Introduction to Modern Astrophysics, 2nd ed., Pearson, (2006)
Module Exam
Description of exams and course work
There will be an oral exam of 25 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using comprehension questions and sample calculations.
For example an assignment in the exam might be:
- Describe ways to measure masses of supermassive black holes at centers of galaxies.
- How to estimate the rate of star formation in galaxies?
- How to measure the distance to a galaxy?
Participation in the exercise classes is strongly recommended since the exercises prepare for the problems of the exam and rehearse the specific competencies.
Exam Repetition
The exam may be repeated at the end of the semester.
Current exam dates
Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.
Title | |||
---|---|---|---|
Time | Location | Info | Registration |
Exam to Extragalactic Astrophysics | |||
Mon, 2023-09-18 till 23:55 | Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin zwischen 18.09.2023 und 21.10.2023. // Dummy date. Contact examiner for individual appointment. Registration for exam date between 2023-Sep-18 and 2023-Oct-21. | till 2023-09-17 |