de | en

Energy Materials 1

Module PH2201

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of SS 2014

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.

available module versions
WS 2022/3WS 2021/2WS 2020/1WS 2019/20WS 2018/9SS 2014

Basic Information

PH2201 is a semester module in English language at Master’s level which is offered in winter semester.

This Module is included in the following catalogues within the study programs in physics.

  • Specific catalogue of special courses for condensed matter physics
  • Specific catalogue of special courses for Applied and Engineering Physics
  • Complementary catalogue of special courses for nuclear, particle, and astrophysics
  • Complementary catalogue of special courses for Biophysics

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
150 h 30 h 5 CP

Responsible coordinator of the module PH2201 in the version of SS 2014 was Aliaksandr Bandarenka.

Content, Learning Outcome and Preconditions


The aim of this module is to provide students with a broad overview over functional materials currently employed or investigated for the energy provision, conversion and storage. Rather than dealing with the physical and chemical basics of energy conversion and storage, the module will focus on the many diverse materials used in this field and explain their important properties in terms of specific functionality and quantitative figures of merit.


  • Fuels: energy content, production, price, sustainability
  • Materials for energy conversion:
  • Materials for fuel cells (membranes, anodes, cathodes, catalysts)
  • Photovoltaic materials (semi-conductors, thin films, materials for sensitization)
  • Photocatalytic materials
  • Materials for energy storage: batteries, supercapacitors
  • Environmental aspects: availability, recycling and life-cycle assessment of energy materials.

Learning Outcome

After successful completion of this module, the students:

  1. have an up-to-date knowledge of the most important materials in the field of energy science,
  2. can explain the working principles of energy conversion and storage devices (batteries, fuel cells, solar cells supercapacitors etc),
  3. can name factors which determine the performance of functional materials for these devices,
  4. can analyse and evaluate pros and cons for future viability of functional materials for energy provision, conversion and storage.


No specific requirements beyond those for master studies.

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

Learning and Teaching Methods

Lectures, seminars (master students), presentations


no info


no info

Module Exam

Description of exams and course work

In an oral exam the learning outcome is tested using comprehension questions and sample problems.

In accordance with §12 (8) APSO the exam can be done as a written test. In this case the time duration is 60 minutes.

Exam Repetition

The exam may be repeated at the end of the semester.

Top of page