This website is no longer updated.

As of 1.10.2022, the Faculty of Physics has been merged into the TUM School of Natural Sciences with the website For more information read Conversion of Websites.

de | en

Photochemical Energy Conversion Artificial Photosynthesis

Module PH2197

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of SS 2014

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.

available module versions
SS 2022SS 2021SS 2020SS 2019WS 2017/8SS 2014

Basic Information

PH2197 is a semester module in English language at Master’s level which is offered in winter semester.

This Module is included in the following catalogues within the study programs in physics.

  • Specific catalogue of special courses for condensed matter physics
  • Specific catalogue of special courses for Applied and Engineering Physics
  • Complementary catalogue of special courses for nuclear, particle, and astrophysics
  • Complementary catalogue of special courses for Biophysics

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
150 h 75 h 5 CP

Responsible coordinator of the module PH2197 in the version of SS 2014 was Katharina Krischer.

Content, Learning Outcome and Preconditions


Photochemical Energy Conversion and Artificial Photosynthesis

For the transition to a renewable energy based energy supply, the greatest challenge is the energy storage to compensate for the daily and yearly variability of wind and solar energy. Owing to their high energy density and temporally unlimited storage capacity, fuels, such as hydrogen, methane or liquid hydrocarbons, present the ideal storage medium.
In the lecture we will discuss in-depth state of the art routes to store solar energy directly in form of chemical energy. These routes involve absorption of solar light (mainly by a semiconductor), and accumulation of the minority charge carriers at the semiconductor surface followed by charge transfer of an electron or hole to a chemical species, such as water or carbon dioxide. Artificial pathways to solar fuels will be compared to natural photosynthesis.  The lecture will provide foundations of the various areas being necessary to understand the production of fuels from sunlight: semiconductor physics, semiconductor surfaces, the solid-liquid interface,  electron transfer theories, experimental techniques, state of the art of water splitting and carbon dioxide reduction.

Learning Outcome

After participation in the Module the student is familiar with the prospects of photochemical energy conversion for future energy storage technologies. In particular she/he is able
1.    to explain the physical foundations needed for photochemical energy conversion
2.    to determine the efficiency of individual energy transfer processes with physical concepts
3.    to assess the rank of solar fuels in a future renewable energy scenario
4.    to estimate the applicability of different production routes of solar fuels
5.    to compare photochemical energy conversion to alternative concepts


Bachelor in Physics or Chemistry

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

VU 4 Photochemical Energy Conversion and Artificial Photosynthesis Krischer, K. Schindler, W. Wed, 10:00–12:00, PH 3734
and singular or moved dates
and dates in groups

Learning and Teaching Methods

lecture, beamer presentation, board work, exercises in individual and group work


practise sheets, accompanying internet site, complementary literature


will be given in the lecture

Module Exam

Description of exams and course work

In an oral exam the learning outcome is tested using comprehension questions and sample problems.

In accordance with §12 (8) APSO the exam can be done as a written test. In this case the time duration is 60 minutes.

Exam Repetition

The exam may be repeated at the end of the semester.

Top of page