This website is no longer updated.

As of 1.10.2022, the Faculty of Physics has been merged into the TUM School of Natural Sciences with the website https://www.nat.tum.de/. For more information read Conversion of Websites.

de | en

Semiconductor Electronic and Photonic Devices

Module PH2171

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of SS 2018

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.

available module versions
SS 2019SS 2018SS 2017SS 2016SS 2015SS 2013

Basic Information

PH2171 is a semester module in German or English language at Master’s level which is offered irregular.

This Module is included in the following catalogues within the study programs in physics.

  • Specific catalogue of special courses for condensed matter physics
  • Specific catalogue of special courses for Applied and Engineering Physics
  • Complementary catalogue of special courses for nuclear, particle, and astrophysics
  • Complementary catalogue of special courses for Biophysics

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
150 h 30 h 5 CP

Responsible coordinator of the module PH2171 in the version of SS 2018 was Ian Sharp.

Content, Learning Outcome and Preconditions

Content

This module will introduce the students to the physics of semiconductor-based optical and electronic devices, their functional characteristics, and their physical realization. The following devices and structures will be addressed in detail:

Semiconductor contacts: Ohmic and Schottky metal/semiconductor contacts, metal-insulator-semiconductor (MIS) contacts, and semiconductor-semiconductor contacts

Diode components: basic p-n junctions, tunnel diodes, avalanche diodes, Gunn diodes

Bipolar transistors

Thyristors

Field effect transistors (FETs): junction FETs, metal-oxide-semiconductor FETs (MOSFETs), charge coupled devices (CCDs)

Optoelectronics: light-emitting diodes (LEDs), semiconductor lasers, detectors, photovoltaics

Learning Outcome

After successful completion of this course the students possess a basic knowledge of devices discussed, including their physical foundations, functional characteristics (e.g. current-voltage characteristics), and applications. This will provide them necessary knowledge to understand the components of modern semiconductor electronic and optoelectronic devices. Students are also able to

-       Draw and explain energetics of various semiconductor junctions

-       Explain the physical basis for current-voltage characteristics of different semiconductor electronic devices

-       Explain the physical structure, typical operating ranges, and limitations of devices

-       Explain how the different devices are used in technological applications

Preconditions

no info

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

TypeSWSTitleLecturer(s)DatesLinks
VU 6 Semiconductor Electronic and Photonic Devices Finley, J. Wed, 09:00–12:00, ZNN 0.001
Thu, 13:00–14:30, ZNN 0.001
documents

Learning and Teaching Methods

The method of instruction is through lectures, in which questions and discussion are encouraged. Fundamental concepts are further illustrated with modern technological examples.

Media

Lecture notes are written using a tablet and are complemented by powerpoint slides that provide figures and videos representing modern research examples, schematic illustrations, and representative data.

Literature

- Sze, "Physics of Semiconductor Devices", Wiley.

- Rosencher, "Optoelectronics", Cambridge University Press.

Module Exam

Description of exams and course work

In a written exam the learning outcome is tested using comprehension questions and sample problems.

In accordance with §12 (8) APSO the exam can be done as an oral exam. In this case the time duration is 25 minutes.

Exam Repetition

The exam may be repeated at the end of the semester.

Top of page