de | en

Stellar structure and evolution

Module PH2168

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of WS 2017/8 (current)

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

available module versions
WS 2017/8SS 2013

Basic Information

PH2168 is a semester module in German or English language at Master’s level which is offered in winter semester.

This Module is included in the following catalogues within the study programs in physics.

  • Specific catalogue of special courses for nuclear, particle, and astrophysics
  • Complementary catalogue of special courses for condensed matter physics
  • Complementary catalogue of special courses for Biophysics
  • Complementary catalogue of special courses for Applied and Engineering Physics

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
150 h 30 h 5 CP

Responsible coordinator of the module PH2168 is Wolfgang Hillebrandt.

Content, Learning Outcome and Preconditions

Content

I. Equations of stellar evolution
  1. The virial theorem and relevant timescales
  2. Hydrostatic equilibrium
  3. Energy generation in stars - thermonuclear reactions
  4. Energy transport in stars
II. Stellar evolution
  1. Stellar models
  2. Main-sequence evolution
  3. Late stages of stellar evolution
  4. Evolution of binary stars
III. Stars as physics laboratories
  1. The sun, solar neutrinos
  2. Cooling of white dwarfs
IV. Stars and cosmology
  1. Stars as distance indicators
  2. Chemical evolution of galaxies

Learning Outcome

After successful participation in the module the student is able to

  1. understand the structure and evolution of stars from their birth to late stages
  2. understand the physical processes that control stellar structure and evolution
  3. know the role stars play in the chemical evolution of galxies and in cosmology

Preconditions

Some knowledge of theoretical physics, in particular statisical physocs and nuclear physics. Some basic knowledge of astrophysics and astronomy is desirable.

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

TypeSWSTitleLecturer(s)Dates
VO 2 Stellar Structure and Evolution Hillebrandt, W. Fri, 12:00–14:00, PH HS3

Learning and Teaching Methods

In the thematically structured lecture the learning content is presented and explained in a didactical and comprehensive form. This includes basic knowledge as well as selected topics from ongoing research.With cross references between different topics the universal concepts in physics and astrophysics are shown. In scientific discussions the students are involved to stimulate their analytic-physics intellectual power.

Media

Blackboard and computer presentation, powerpoint, videos.

Literature

Cox, Giuli: Principles of Stellar Structure (new edition by A. Weiss et al.); Cambridge Scientific Publishers (2004)

Kippenhahn, Weigert, Weiss: Stellar Structure and Evolution; Springer (2012)

Salaris, Cassis: Evolution of Stars and Stellar Populations; Wiley & Sons (2005)

Further original literature will be referred to during the lectures.
 

Module Exam

Description of exams and course work

There will be an oral exam of about 30 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using comprehension questions and sample calculations.

For example an assignment in the exam might be:

  • Explanation of the Hertzsprung-Russel diagram
  • Physics, derivation of the stellar structure equations

Exam Repetition

The exam may be repeated at the end of the semester.

Top of page