de | en

Quantum Mechanics of Molecular Systems

Module PH2165

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of WS 2019/20 (current)

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

available module versions
WS 2019/20WS 2018/9WS 2017/8SS 2013

Basic Information

PH2165 is a semester module in English language at Master’s level which is offered in winter semester.

This Module is included in the following catalogues within the study programs in physics.

  • Specific catalogue of special courses for Biophysics
  • Complementary catalogue of special courses for condensed matter physics
  • Complementary catalogue of special courses for nuclear, particle, and astrophysics
  • Complementary catalogue of special courses for Applied and Engineering Physics
  • Specialization Modules in Elite-Master Program Theoretical and Mathematical Physics (TMP)

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
150 h 60 h 5 CP

Responsible coordinator of the module PH2165 is Philipp Scherer.

Content, Learning Outcome and Preconditions

Content

Schrödinger equation and wavefunctions

particle in a box
harmonic oscillator
anharmonic corrections
rigid rotor

molecular states

Born-Oppenheimer approximation

Slater-determinants
electron structure calculations for molecular systems (LCAO-MO)

electron-vibration coupling


transitions between states,

semiclassical curve crossing

Landau-Zener model

time dependent perturbation theory

Fermi's golden rule
optical transitions


       

Learning Outcome

After participating, the students are able to apply simple quantum mechanical models to molecular systems to analyse molecular states and transitions.

They are able

-  to describe Pi-electron systems of molecules with conjugated double bonds within the free electron model

- to formulate the Hamiltonian of a harmonic oscillator with ladder operators and to solve the time independent Schrödinger equation

- describe anharmonic effects with perturbation theory

- determine localized wave packets which solve the time dependent Schrödinger equation for free particles and particles in a harmonic potential

- to formulate the Hamiltonian of a molecular system and to apply the Born-Oppenheimer approximation to separate the motion of electrons and nuclei

- to describe the ground state of a many electron system with a Slater determinant

- to describe modern electron structure methods

- to apply the quasiclassical approximation to molecular transitions and to derive the Landau Zener rate expression with perturbation theory

- to derive the rate expression for molecular transitions into a continuum of final states and to apply it to optical transitions

- to interpret optical spectra of larger molecules on the basis of electron-vibration coupling

Preconditions

basic quantum mechanics of Bachelor level

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

Learning and Teaching Methods

The module consists a lecture and exercises.

During the lecture the learning content is presented. Necessary mathematical methods are explained and important theoretical results are derived explicitly. Functional relationships are shown with graphics and computer examples. Theoretical results are compared with experimental data from the literature with the help of computer presentations. After the lecture there is time for discussion.

Numerous problem examples with solutions deepen the learning content in the exercises. Here the mathematical derivations are discussed in more detail and their application is exercised using selected problem examples and calculations. Thus the students are able to explain and apply the learned knowledge on their own.

A series of interactive applets are introduced in the lecture and serve for individual studies visualizing functional relationships and the  dependency  of the theoretical results on the relevant parameters

additional notes and literature references are provided for further deepening of the learning content

Media

Blackboard, laptop/projector, lecture notes, exercises and examples, Java programs, extra material (additional notes)

Literature

  • P.O.J. Scherer & S.F. Fischer: Theoretical Molecular Biophysics, Springer-Verlag, (2017)
  • H. Haken & H. Wolf: Molekülphysik und Quantenchemie, Springer-Verlag, (2006)
  • F. Schwabl: Quantenmechanik, Springer-Verlag, (2007)
  • Lecture notes

Module Exam

Description of exams and course work

There will be an oral exam of 25 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using comprehension questions and sample calculations.

For example an assignment in the exam might be:

  • describe the Pi-electron system of a molecule with conjugated double bonds within the free electron model
  • formulate the Hamiltonian of a harmonic oscillator with ladder operators and to solve the time independent Schrödinger equation
  • describe anharmonic effects with perturbation theory
  • determine localized wave packets which solve the time dependent Schrödinger equation for free particles and particles in a harmonic potential
  • formulate the Hamiltonian of a molecular system and to apply the Born-Oppenheimer approximation
  • describe the ground state wavefunction of a many electron system
  • describe modern electron structure methods
  • apply the semiclassical approximation to molecular transitions and derive the Landau Zener rate expression with perturbation theory
  • derive the rate expression for molecular transitions into a continuum of final states and apply it to optical transitions
  • interpret optical spectra of larger molecules on the basis of electron-vibration coupling

Remarks on associated module exams

The exam for this module can be taken together with the exam to the associated follow-up module PH2187: Elementary Processes in Molecular Systems / Elementare Prozesse in molekularen Systemen after the follwoing semester. In this case you need to register for both exams in the following semester.

Exam Repetition

The exam may be repeated at the end of the semester. There is a possibility to take the exam in the following semester.

Current exam dates

Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.

Title
TimeLocationInfoRegistration
Exam in Quantum Mechanics of Molecular Systems
Mon, 2019-07-22 Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin vor So, 22.09.2019. Lehrveranstaltung(en) des Moduls war(en) im Wintersemester. // Dummy date. Contact examiner for individual appointment. Registration for exam date before Sun, 2019-09-22. Lectures to the module where in winter semester. till 2019-06-30 (cancelation of registration till 2019-07-21)
Tue, 2019-09-24 Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin von Mo, 23.09.2019 bis Sa, 19.10.2019. Lehrveranstaltung(en) des Moduls war(en) im Wintersemester. / Dummy date. Contact examiner for individual appointment. Registration for exam date from Mon, 23.09.2019 till Sat, 19.10.2019. Lectures to the module where in winter semester. till 2019-09-23
Top of page