Applied Superconductivity 2 (Superconducting Quantum Circuits)

Module PH2145

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Basic Information

PH2145 is a semester module in German or English language at Master’s level which is offered in summer semester.

This module description is valid to WS 2012/3.

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
150 h  h 5 CP

Responsible coordinator of the module PH2145 is Rudolf Gross.

Content, Learning Outcome and Preconditions

Content

The physical foundations and implementation of solid state quantum electronics has attracted broad interest in the context of the realization of quantum information processing systems. They are intensively studied in various collaborative research projects (e.g. SFB 631, cluster of excellence NIM). In this module we address the physics of superconducting quantum circuits and show how such circuits can be implemented based on superconducting thin films and nanostructures. We also discuss the application of superconducting quantum circuits in the study of fundamental light-matter interaction, the realization of solid state based quantum information processing systems and in quantum simulation. The following specific topics will be addressed:

  • introduction to secondary quantumn effects
  • superconducting quantum circuits: from resonators to qubits
  • circuit Quantum electrodynamics: "Quantum octics on a chip"
  • quantum information processing with superconducting circuits
  • propagating quantum microwaves

Learning Outcome

By the participation in this module the students acquire profound knowledge on the topics quantum electronics and superconducting quantum circuits, in particular to the following aspects:
1) secondary quantumn effects, 2) superconducting quantum circuits: from resonators to qubits, 3) circuit Quantum electrodynamics: "Quantum octics on a chip", 4) quantum information processing with superconducting circuits, 5) propagating quantum microwaves.

Preconditions

Basic knowledge on condensed matter physics and quantum mechanics.

Courses, Learning and Teaching Methods and Literature

Learning and Teaching Methods

Lecture, beamer presentation, blackboard work, exercises in groups, discussions.

Media

Handouts, exercise sheets, supplementary literature.

Literature

  • Handouts
  • Tinkham: Introduction to Superconductivity
  • K. K. Likharev: Dynamics of Josephson Junctions and Circuits Gordon and Breach Science Publishers, New York (1986)
  • T. P. Orlando, K. A. Delin: Foundations of Applied Superconductivity, Addison-Wesley, New York (1991)
  • Buckel, Kleiner: Supraleitung
  • Claude Cohen-Tannoudji: Quantum Mechanics, Volume I, Wiley-Interscience (2006)

Module Exam

Description of exams and course work

In an oral exam the learning outcome is tested using comprehension questions and sample problems.

In accordance with §12 (8) APSO the exam can be done as a written test. In this case the time duration is 60 minutes.

Exam Repetition

There is a possibility to take the exam at the end of the semester. There is a possibility to take the exam in the following semester.

Condensed Matter

When atoms interact things can get interesting. Fundamental research on the underlying properties of materials and nanostructures and exploration of the potential they provide for applications.

Nuclei, Particles, Astrophysics

A journey of discovery to understanding our world at the subatomic scale, from the nuclei inside atoms down to the most elementary building blocks of matter. Are you ready for the adventure?

Biophysics

Biological systems, from proteins to living cells and organisms, obey physical principles. Our research groups in biophysics shape one of Germany's largest scientific clusters in this area.