Ultrakalte Quantengase 2
Ultra Cold Quantum Gases 2

Modul PH2125

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Basisdaten

PH2125 ist ein Semestermodul in Deutsch oder Englisch auf Master-Niveau das im Sommersemester angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Allgemeiner Spezialfachkatalog Physik
  • Spezifischer Spezialfachkatalog Physik der kondensierten Materie

Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
150 h 60 h 5 CP

Inhaltlich verantwortlich für das Modul PH2125 ist Stephan Dürr.

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

Dieses Modul vertieft das Verständnis der ultrakalten Quantengase. Kollektiven Anregungen werden komplementiert durch die fundamentalen Anregungen der Bogoliubov-Theorie. Suprafluidität und quantisierte Wirbel werden vorgestellt. Die Interferenz zweier Bose-Einstein-Kondensate und spontane Symmetriebrechung werden diskutiert. Die Verwendung von Feshbach-Resonanzen in der Assoziation ultrakalter Moleküle und im BEC-BCS-Crossover wird dargestellt. Stark korrelierte Zustände in optischen Gittern werden präsentiert.

Lernergebnisse

Nach erfolgreicher Teilnahme an diesem Modul ist der/die Studierende in der Lage 1) Anregungen in ultrakalten Gases zu analysieren 2) die Theorie der Suprafluidität und der quantisierten Wirbel anzuwenden 3) die Interferenz von Kondensaten zu bewerten 4) Stark korrelierte Zustände im BEC-BCS-Crossover und in optischen Gittern zu verstehen

Voraussetzungen

PH2125

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)Termine
VU 3 Ultra Cold Quantum Gases 2 Dürr, S. Freitag, 10:00–12:00
sowie Termine in Gruppen

Lern- und Lehrmethoden

Vortrag, Beamerpräsentation, Tafelarbeit, Übungen in Einzel- und Gruppenarbeit, Lehrfilme

Medienformen

Übungsblätter

Literatur

C. J. Pethick & H. Smith, Bose-Einstein condensation in dilute gases (University Press, Cambridge, 2002). L. Pitaevskii & S. Stringari, Bose-Einstein condensation (Clarendon, Oxford, 2003). H. J. Metcalf & P. van der Straten, Laser Cooling and Trapping (Springer, Berlin,1999). C. Cohen-Tannoudji, J. Dupont-Roc & G. Grynberg Atom-Photon Interactions (Wiley, New York, 1992).

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

In einer mündlichen Prüfung wird das Erreichen der Lernergebnisse durch Verständnisfragen und Beispielaufgaben bewertet.

Die Prüfung kann in Übereinstimmung mit §12 (8) APSO auch schriftlich abgehalten werden, in diesem Fall ist der Richtwert für die Prüfungsdauer 60 Minuten.

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.