Eichtheorien bei endlicher Temperatur
Gauge Theories at finite temperature

Modul PH2121

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Basisdaten

PH2121 ist ein Semestermodul in Englisch auf Master-Niveau das im Sommersemester angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Allgemeiner Spezialfachkatalog Physik
  • Spezifischer Spezialfachkatalog Physik der kondensierten Materie
  • Spezifischer Spezialfachkatalog Kern-, Teilchen- und Astrophysik

Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
150 h 75 h 5 CP

Inhaltlich verantwortlich für das Modul PH2121 ist der Studiendekan der Fakultät Physik.

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

Understanding gauge theories at finite temperature is necessary for the description of many phenomena under extreme conditions. Examples include a hot plasma of electrons and protons in a laser experiment or the quark-gluon plasma which is created in heavy-ion collisions, e.g. at the Large Hadron Collider at CERN.

Since gauge theories describe the fundamental interactions, one needs a formalism to address finite-temperature problems with these theories. We will introduce the basics of these methods.

Specifically, we will treat Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD) at finite temperature. Topics will include:
- Gauge fixing in gauge theories
- Quantization of gauge theories
- Perturbative methods
- Finite-temperature formalism for gauge theories
- Screening
- Hard thermal loop resummations
- Strong coupling expansion in QCD and the Polyakov loop
- Infrared singularities at finite temperature (Linde problem)
- Renormalization Group methods

Lernergebnisse

Students will acquire the ability to solve problems in gauge theories at finite temperature. They will learn about the specific problems that arise in this context and learn about the methods that have been developed to address them. They will gain an overview over these methods and the connections to current research topics. At the end of the course, they will be able to assess such problems and place them in the context of current research efforts.

To gain proficiency with the calculational methods, it is imperative to work on the homework problems which will be provided. Students will be able to master perturbative calculations at finite temperature for standard problems.

Voraussetzungen

Quantenmechanik I + II, Thermodynamik, Grundlagen der Quantenfeldtheorie, wünschenswert wären ebenfalls Grundkenntnisse über Feldtheorie bei endlicher Temperatur.

Einige störungstheoretische Methoden werden in der Vorlesung entwickelt.

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)Termine
VU 4 Gauge Theories at finite temperature Klein, B.
Mitwirkende: Holt, J.
einzelne oder verschobene Termine
sowie Termine in Gruppen

Lern- und Lehrmethoden

keine Angabe

Medienformen

keine Angabe

Literatur

keine Angabe

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

In einer mündlichen Prüfung wird das Erreichen der Lernergebnisse durch Verständnisfragen und Beispielaufgaben bewertet.

Die Prüfung kann in Übereinstimmung mit §12 (8) APSO auch schriftlich abgehalten werden, in diesem Fall ist der Richtwert für die Prüfungsdauer 60 Minuten.

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird am Semesterende angeboten. Eine Wiederholungsmöglichkeit wird im Folgesemester angeboten.

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.