Grundlagen der Halbleiterphysik
Fundamentals of Semiconductor Physics

Modul PH2093

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Basisdaten

PH2093 ist ein Semestermodul in Englisch auf Master-Niveau das im Wintersemester angeboten wird.

Die Gültigkeit des Moduls ist bis SS 2012.

Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
150 h 90 h 5 CP

Inhaltlich verantwortlich für das Modul PH2093 ist Martin Stutzmann.

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

This module provides an introduction to the electronic and optical properties of modern semiconductor materials and their associated nanostructures. After a contextual and historical motivation, it begins with an introduction to the different methods of fabrication used for ultrapure semiconductor materials, alloys and mixed crystal "multi-layer" systems. It describes how quantum mechanical effects can be exploited for novel device applications in electronics and opto-electronics. After this material properties of the most commonly used semiconductors, lattice vibrations and electronic bandstructure are discussed. Carrier statistics in intrinsic (undoped) semiconductors are then explored before discussing how doping can be used to controllably modify the electronic properties. Thereafter the semi-classical and quantum electronic properties of semiconductors are studied and it is describe how these charge transport properties can be controlled by tailored quantum phenomena.

Lernergebnisse

After participation in the Module the student is able to:

  1. Describe the crystal structure and recall the principle fabrication methods for the most prominent semiconductor materials
  2. Explain and calculate the electronic bandstructure of these materials and its dependence on material composition.
  3. Understand the terms "two-dimensional", "one-dimensional" and "zero-dimensional" semiconductor nanostructure and explain the influence of quantum confinement on the electronic properties of semiconductors.
  4. Understand and explain the physics governing electrical conductivity in bulk semiconductors and low dimensional nanostructures.
  5. Understand and explain magneto transport phenomena including the integer quantum Hall effect and
  6. Understand and explain the interaction of electromagnetic radiation with semiconductors.

Voraussetzungen

Keine Vorkenntnisse nötig, die über die Zulassungsvoraussetzungen zum Masterstudium hinausgehen.

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)Termine
VU 5 Grundlagen der Halbleiterphysik Stutzmann, M. einzelne oder verschobene Termine
sowie Termine in Gruppen

Lern- und Lehrmethoden

lecture, beamer presentation, board work, exercises in individual and group work, discussion

Medienformen

lecture script, practise sheets, accompanying internet site, complementary literature

Literatur

Standard-Lehrbücher der Halbleiterphysik, zum Beispiel:
J. H. Davies: The Physics of Low-Dimensional Semiconductors (Cambridge University Press, 1998),
M. Grundmann: Semiconductor Physics, (Cambridge University Press, 2006),
C. Weisbuch and B. Vinter: Quantum Semiconductor Structures, (Academic Press-1991),
T. Heinzel: Mesoscopic Electronics in Solid State Nanostructures, (Wiley VCH, 2003),
Bushan, Bharat (Editor): “Springer Handbook of Nanotechnology, (2nd revised and extended edition)

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

In einer mündlichen Prüfung wird das Erreichen der Lernergebnisse durch Verständnisfragen und Beispielaufgaben bewertet.

Die Prüfung kann in Übereinstimmung mit §12 (8) APSO auch schriftlich abgehalten werden, in diesem Fall ist der Richtwert für die Prüfungsdauer 60 Minuten.

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird am Semesterende angeboten. Eine Wiederholungsmöglichkeit wird im Folgesemester angeboten.

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.