Particle Physics with Accelerators and Natural Sources
Module PH2082
Module version of SS 2019
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | ||||||
---|---|---|---|---|---|---|
SS 2022 | SS 2021 | SS 2020 | SS 2019 | SS 2018 | SS 2017 | SS 2011 |
Basic Information
PH2082 is a semester module in German or English language at Master’s level which is offered in summer semester.
This Module is included in the following catalogues within the study programs in physics.
- Specific catalogue of special courses for nuclear, particle, and astrophysics
- Complementary catalogue of special courses for condensed matter physics
- Complementary catalogue of special courses for Biophysics
- Complementary catalogue of special courses for Applied and Engineering Physics
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 30 h | 5 CP |
Responsible coordinator of the module PH2082 in the version of SS 2019 was Frank Simon.
Content, Learning Outcome and Preconditions
Content
This module provides an introduction to modern experimental astro-particle and particle physics. It covers:
- The connections of particle and astro-particle physics
- Precision tests of the Standard Model of particle physics
- Dark Matter - WIMPs and Axions
- Neutrinos in the cosmos, from accelerators and natural sources
- Precision experiments at accelerators and the physics of heavy quarks
- Gravitational waves
Learning Outcome
After successful participation in this module, the student is able to
- Understand the concepts of modern astro-particle physics experiments
- Discuss precision measurements and heavy quark physics at accelerators
- Explain the evidence, motivation and experimental searches for different dark matter candidates
- Discuss and understand the latest results from neutrino physics
- Explain the first experimental observation of gravitational waves
Preconditions
Introductory lecture in Nuclear, Particle, and Astrophysics at bachelor level (PH0016 at TUM or equivalent)
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VO | 2 | Particle Physics with Accelerators and Natural Sources | Majorovits, B. |
Mon, 14:00–16:00, PH II 127 |
eLearning documents |
UE | 2 | Exercise to Particle Physics with Accelerators and Natural Sources |
Responsible/Coordination: Majorovits, B. |
dates in groups |
Learning and Teaching Methods
The lecture presents the learning content in consecutive topical blocks and provides extensive cross references to latest results in particle and astroparticle physics, which can be used by the students to deepen their understanding of individual topics. The lecture coninuously offers the possibility for intensive discssions of the topics of the course and thematically related questions that arise from the referenced material.
Media
Blackboard presentation, PowerPoint presentation, website for presentation material, additional literature and links.
Literature
- Mark Thomson: "Modern Particle Physics", Cambridge University Press 2013.
- L. Bergström and Ariel Goobar, "Cosmology and Particle Astrophysics", Springer
Module Exam
Description of exams and course work
There will be an oral exam of 30 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using comprehension questions.
For example an assignment in the exam might be:
- Which experimental observations lead to the postulation of Dark Matter?
- How could axions be detected in the laboratory?
- What is the experimental proof that neutrinos have mass?
- What is the role of the top quark in the Standard Model?
- How do precision experiments provide sensitivity to physics beyond the Standard Model?
- What is the origin of gravitational waves that have been observed?
Exam Repetition
The exam may be repeated at the end of the semester. There is a possibility to take the exam in the following semester.
Current exam dates
Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.
Title | |||
---|---|---|---|
Time | Location | Info | Registration |
Exam to Particle Physics with Accelerators and Natural Sources | |||
Mon, 2024-02-05 till 23:55 | Dummy-Termin. Lehrveranstaltungen zu diesem Modul waren im SS 2023. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin vor 23.03.2024. // Dummy date. Courses to this module were in SS 2023. Contact examiner for individual appointment. Registration for exam date before 2024-Mar-23. | till 2024-01-15 (cancelation of registration till 2024-02-04) | |
Mon, 2024-03-25 till 23:55 | Dummy-Termin. Lehrveranstaltungen zu diesem Modul waren im SS 2023. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin zwischen 25.03.2024 und 20.04.2024. // Dummy date. Courses to this module were in SS 2023. Contact examiner for individual appointment. Registration for exam date between 2024-Mar-25 and 2024-Apr-20. | till 2024-03-24 |