Rechnergestützte Astrophysik
Computational Astrophysics

Modul PH2077

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Basisdaten

PH2077 ist ein Semestermodul in Englisch auf Master-Niveau das im Wintersemester angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Allgemeiner Spezialfachkatalog Physik
  • Spezifischer Spezialfachkatalog Kern-, Teilchen- und Astrophysik

Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
150 h 40 h 5 CP

Inhaltlich verantwortlich für das Modul PH2077 ist Ewald Müller.

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

The subject of astrophysics are complex objects and phenomena. Seeking for a theoretical understanding, a realistic description is required. To this end, computers have become a major tool of research and with ever more powerful computational resources and modern numerical techniques, a detailed modeling of astrophysical objects has become feasible. Based on general trategies to numerically model astrophysical phenomena, the course aims at describing some recent developments in computational astrophysics.
Covered topics:
-) Astrophysical concepts
-) Numerical concepts
-) Modeling gravity
-) Computational fluid dynamics (CFD)
-) Relativistic CFD
-) Magnetohydrodynamics
-) Modeling nuclear reactions
-) Modeling radiative transfer

Lernergebnisse

After participation in the Module the student is able to:
1) understand basic modeling techniques of astrophysical mechanisms
2) apply numerical schemes for describing astrophysical processes
3) create numerical astrophysics codes that involve as basic building blocks one ore many of the topics discussed in the course

Voraussetzungen

Keine Vorkenntnisse nötig, die über die Zulassungsvoraussetzungen zum Masterstudium hinausgehen.

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)Termine
VO 2 Computational Astrophysics Janka, H. Müller, E. Freitag, 14:00–16:00
sowie einzelne oder verschobene Termine

Lern- und Lehrmethoden

lecture, beamer presentation, board work, discussion

Medienformen

computer simulations, accompanying internet site

Literatur

P. Bodenheimer, G.P. Laughlin, M. Rozycka, and H.W. Yorke: Numerical Methods in Astrophysics, Taylor & Francis, 2007
W.H. Press, S.A. Teukolsky. W.T. Vetterling, and B.P. Flannery: Numerical Recipes (third edition), Cambridge University Press, 2007
J.M. Thijssen: Computational Physics (2nd edition), Cambridge University Press, 2007
D. Potter: Computational Physics, Wiley, 1973
W. Hillebrandt, E. Mueller, and F. Kupka: Einfuehrung in die Theoretische Astrophysik, http://www.mpa-garching.mpg.de/lectures/TASTRO_SS08
T. Padmanabhan: An Invitationa to Astrophysics, World Scientific, 2006

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

In einer mündlichen Prüfung wird das Erreichen der Lernergebnisse durch Verständnisfragen und Beispielaufgaben bewertet.

Die Prüfung kann in Übereinstimmung mit §12 (8) APSO auch schriftlich abgehalten werden, in diesem Fall ist der Richtwert für die Prüfungsdauer 60 Minuten.

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird am Semesterende angeboten. Eine Wiederholungsmöglichkeit wird im Folgesemester angeboten.

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.