de | en

Physics with Positrons 1

Module PH2075

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of WS 2017/8

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

available module versions
WS 2019/20WS 2018/9WS 2017/8WS 2010/1

Basic Information

PH2075 is a semester module in German or English language at Master’s level which is offered in winter semester.

This Module is included in the following catalogues within the study programs in physics.

  • Specific catalogue of special courses for condensed matter physics
  • Specific catalogue of special courses for nuclear, particle, and astrophysics
  • Specific catalogue of special courses for Applied and Engineering Physics
  • Complementary catalogue of special courses for Biophysics

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
150 h 30 h 5 CP

Responsible coordinator of the module PH2075 in the version of WS 2017/8 was Christoph Pascal Hugenschmidt.

Content, Learning Outcome and Preconditions

Content

This module provides an introduction to the physics of positron with its applications in atomic physics and in particular in materials science, solid state and surface physics. After a historical overview different techniques will be presented, how positron sources and mono-energetic positron beams are produced. The interaction of positrons with matter is described to illustrate how positrons are used as a probe to investigate crystal defects on an atomic-scale. With surface analysis as an example the specific differences to techniques, in which electrons are used, are shown. Then a systematic overview of crystal defects and the characterization of the free volume of amorphous solids is given. Then various radiation and particle detectors are presented and their application in positron experiments is discussed. Finally, various spectrometers are presented to investigate electron momentum distributions, defect types and concentrations, element distributions near defects, surfaces and fundamental properties of positronium. Exemplarily some findings of current research are discussed. 

 

Learning Outcome

After successful completion of this module, the students are able to

  • understand and explain the interaction of positrons and gamma rays with matter
  • present particle and radiation detectors,
  • explain the production of positron beams, and the electrostatic and magnetic beam guidance
  • explain the operation of positron spectrometers and complementary measuring methods
  • describe crystal defects and to know positron techniques that are applied to the investigation of it
  • explain the measurement of the electronic structure of materials
  • to explain the production and measurements with positronium 

Preconditions

No special prerequisites beyond the ususal Masters degree program.

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

Learning and Teaching Methods

In this lecture, the contents are presented by lecturing the theoretical basics and their experimental implementation, which are explained by illustrative examples. In particular, cross-references and the explanation of complementary measurement methods are used to bridge the gap to various topics. In the lecture, calculations and exemplary estimations are carried out on the basis of examples so that the students can independently explain and apply what they have learned. Great emphasis is put on stimulating interactive discussion with students about what they have just learned. This promotes students' own analytical ability to think through physical problems. The lecture contains hyperlinks and references to the relevant literature, which are intended to promote independent literature research.

Media

Lecture, projector presentation, blackboard work, discussion, accompanying website, supplementary literature, PDF lecture documents

Literature

Standard textbooks of solid state and nuclear physics, eg.

  • C. Schaefer L. Bergmann. Lehrbuch der Experimentalphysik, Bd. 6: Festkörper. Gruyter, (2005);
  • Neil W. Ashcroft and N. David Mermin. Solid State Physics. Saunders College, Fort Worth, (2001);
  • G. Schatz and A. Weidinger. Nukleare Festkörperphysik. B. G. Teubner, (1997);
  • Theo Mayer-Kuckuk. Kernphysik. Teubner, Stuttgart, (1984);

For positron physics:

  • P. Coleman, Positron Beams and Their Applications, World Scientific, (2000).

References to Reviews will be given during the lecture.

Module Exam

Description of exams and course work

There will be an oral exam of 30 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using comprehension questions, discussions based on sketches and basic formulas.

For example an assignment in the exam might be:

  • What types of positron sources are there?
  • Sketch the experimental setup of a laboratory positron beam.
  • What is positron moderation?
  • Describe the positronium.
  • Use the trapping model to investigate vacancies.

Remarks on associated module exams

The exam for this module can be taken together with the exam to the associated follow-up module PH2076: Physik mit Positronen 2 / Physics with Positrons 2 after the follwoing semester. In this case you need to register for both exams in the following semester.

Exam Repetition

The exam may be repeated at the end of the semester. There is a possibility to take the exam in the following semester.

Current exam dates

Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.

Title
TimeLocationInfoRegistration
Exam to Physics with Positrons 1
Mon, 2020-02-03 Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin vor Mo, 23.03.2020. // Dummy date. Contact examiner for individual appointment. Registration for exam date before Mon, 2020-03-23. till 2020-01-15 (cancelation of registration till 2020-02-02)
Tue, 2020-03-24 Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin zwischen Di, 24.03.2020 und Sa, 18.04.2020. // Dummy date. Contact examiner for individual appointment. Registration for exam date between Tue, 2020-03-24 and Sat, 2020-04-18. till 2020-03-23
Top of page