Physics with Positrons 1
Module PH2075
Module version of WS 2022/3 (current)
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | ||||||
---|---|---|---|---|---|---|
WS 2022/3 | WS 2021/2 | WS 2020/1 | WS 2019/20 | WS 2018/9 | WS 2017/8 | WS 2010/1 |
Basic Information
PH2075 is a semester module in German or English language at Master’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
- Specific catalogue of special courses for condensed matter physics
- Specific catalogue of special courses for nuclear, particle, and astrophysics
- Specific catalogue of special courses for Applied and Engineering Physics
- Focus Area Imaging in M.Sc. Biomedical Engineering and Medical Physics
- Complementary catalogue of special courses for Biophysics
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 30 h | 5 CP |
Responsible coordinator of the module PH2075 is Christoph Pascal Hugenschmidt.
Content, Learning Outcome and Preconditions
Content
This module gives an introduction to positron physics with its applications in materials science, solid state physics and surface physics. After a historical outline, different techniques for producing positron sources and mono-energetic positron beams are introduced. The interaction of positrons with matter is described to show how positrons are used as probe particles to investigate crystal defects on an atomic scale. In addition, the generation and destruction of positronium is explained. Surface investigations are used as an example to show the specific differences to techniques using electrons. Then a systematic overview of crystal defects and the characterization of the free volume of amorphous solids is given. Afterwards, various radiation and particle detectors will be presented and their use for positron experiments will be discussed. Finally, different spectrometers will be presented to investigate defect types and concentrations. In particular, the measurement of positron lifetime in solids will be discussed in detail.
Learning Outcome
After successful participation in this module, the student will be able to
- explain the production of positron beams as well as the electrostatic and magnetic beam guidance
- understand and explain the interaction of positrons with matter.
- describe the interaction of gamma radiation with matter
- describe particle and radiation detectors
- describe crystal defects and identify positron techniques used to investigate them
- explain how a positron lifetime spectrometer works
- to explain the production and measurements with Positronium
Preconditions
No special prerequisites beyond the ususal Masters degree program.
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VO | 2 | Physics with positrons 1 | Hugenschmidt, C. |
Thu, 08:15–10:00, PH 2271 |
eLearning |
Learning and Teaching Methods
In this lecture, the contents are presented by lecturing the theoretical basics and their experimental implementation, which are explained by illustrative examples. In particular, cross-references and the explanation of complementary measurement methods are used to bridge the gap to various topics. In the lecture, calculations and exemplary estimations are carried out on the basis of examples so that the students can independently explain and apply what they have learned. Great emphasis is put on stimulating interactive discussion with students about what they have just learned. This promotes students' own analytical ability to think through physical problems. The lecture contains hyperlinks and references to the relevant literature, which are intended to promote independent literature research.
Media
Lecture, projector presentation, blackboard work, discussion, accompanying website, supplementary literature, PDF lecture documents
Literature
Textbooks in solid state and nuclear physics such as:
- C. Schaefer L. Bergmann. Lehrbuch der Experimentalphysik, Bd. 6: Festkörper. Gruyter, (2005);
- Neil W. Ashcroft and N. David Mermin. Solid State Physics. Saunders College, Fort Worth, (2001);
- G. Schatz and A. Weidinger. Nukleare Festkörperphysik. B. G. Teubner, (1997);
- Theo Mayer-Kuckuk. Kernphysik. Teubner, Stuttgart, (1984);
Positron physics:
- P. Coleman, Positron Beams and Their Applications, World Scientific, (2000).
References to Reviews will be given during the lecture.
Module Exam
Description of exams and course work
There will be an oral exam of 30 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using comprehension questions, discussions based on sketches and basic formulas.
For example an assignment in the exam might be:
- What types of positron sources are there?
- Sketch the experimental setup to produce a monoenergetic positron beam.
- What is positron moderation?
- Why is moderation important (compared with electrons)?
- Describe the binding of positron and electron (positronium).
- Use the trapping model to investigate vacancies.
Remarks on associated module exams
The exam for this module can be taken together with the exam to the associated follow-up module PH2076: Physik mit Positronen 2 / Physics with Positrons 2 after the follwoing semester. In this case you need to register for both exams in the following semester.
Exam Repetition
The exam may be repeated at the end of the semester. There is a possibility to take the exam in the following semester.
Current exam dates
Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.
Title | |||
---|---|---|---|
Time | Location | Info | Registration |
Exam to Physics with Positrons 1 | |||
Mon, 2023-07-17 till 23:55 | Dummy-Termin. Lehrveranstaltungen zu diesem Modul waren im WS 2022/3. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin vor 16.09.2023. // Dummy date. Courses to this module were in WS 2022/3. Contact examiner for individual appointment. Registration for exam date before 2023-Sep-16. | till 2023-06-30 (cancelation of registration till 2023-07-16) | |
Mon, 2023-09-18 till 23:55 | Dummy-Termin. Lehrveranstaltungen zu diesem Modul waren im WS 2022/3. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin zwischen 18.09.2023 und 21.10.2023. // Dummy date. Courses to this module were in WS 2022/3. Contact examiner for individual appointment. Registration for exam date between 2023-Sep-18 and 2023-Oct-21. | till 2023-09-17 |