Physik mit Neutronen 2 (Anwendungen)
Physics with Neutrons 2 (Applications)

Modul PH2054

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Modulversion vom SS 2016 (aktuell)

Von dieser Modulbeschreibung gibt es historische Versionen. Eine Modulbeschreibung ist immer so lange gültig, bis sie von einer neuen abgelöst wird.

verfügbare Modulversionen
SS 2016WS 2010/1

Basisdaten

PH2054 ist ein Semestermodul in Englisch oder Deutsch auf Master-Niveau das im Sommersemester angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Allgemeiner Spezialfachkatalog Physik
  • Spezifischer Spezialfachkatalog Applied and Engineering Physics
  • Spezifischer Spezialfachkatalog Physik der kondensierten Materie

Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
150 h 75 h 5 CP

Inhaltlich verantwortlich für das Modul PH2054 ist Sebastian Mühlbauer.

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

  • Magnetische Neutronenstreuung: Strukturbestimmung
  • Magnetische Neutronenstreuung: Magnonen
  • Polarisierte Neutronen: Magnetismus
  • Kleinwinkelstreuung, diffuse Streuung: Legierungen, Supraleitung
  • Reflektometrie, Neutronenoptik: Heterostrukturen, Superspiegel

Lernergebnisse

Nach Teilnahme an den Lehrveranstaltungen des Moduls sind die Studierenden in der Lage:

  • magnetische Wirkungsquerschnitte zu verstehen
  • elastische magnetische Neutronenstreudaten zu interpretieren
  • Dispersionkurven von ferro- und antiferromagnetischen Magnonen zu messen und zu verstehen
  • Kristallfelder in Materialien zu bewerten
  • Diffraktogramme von Flussliniengittern zu interpretieren
  • Grundlagen der Polarisationsanalyse zu verstehen

Voraussetzungen

  • absolviertes Bachelorstudium in Physik
  • empfohlen: Festkörperphysik

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)Termine
VU 4 Physics with neutrons 2 Mühlbauer, S. Montag, 12:00–14:00

Lern- und Lehrmethoden

Die Lernziele des Moduls werden durch eine frontale Vorlesung mit Tafelanschrieb und mündlicher Kommunikation sowie Powerpoint Präsentationen erreicht. Die Vorlesung wird durch wöchentliche Übungen ergänzt, in denen die Studenten unter der Aufsicht von Tutoren Probleme lösen.

Medienformen

  • Vorlesung
  • Übungen
  • Bücher
  • Internet

Literatur

  1. A. Furrer, J. Mesot, T. Strässle: Neutron Scattering in Condensed Matter Physics, World Scientific, London (2009) .
  2. G. L. Squires: Introduction to the Theory of Thermal Neutron Scattering, Dover Publications, N. Y. (1966).
  3. S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter I, II, Oxford Science Publ., Oxford (1984).
  4. A. Furrer: Frontiers in Neutron Scattering, World Scientific, London (1999).
  5. G. E. Bacon: Neutron Diffraction, Oxford (1962).
  6. P. A. Egelstaff: Thermal Neutron Scattering, Acad. Press, London (1965).

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

In einer mündlichen Prüfung wird das Erreichen der Lernergebnisse durch Verständnisfragen und Beispielaufgaben bewertet.

Die Prüfung kann in Übereinstimmung mit §12 (8) APSO auch schriftlich abgehalten werden, in diesem Fall ist der Richtwert für die Prüfungsdauer 60 Minuten.

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird am Semesterende angeboten. Eine Wiederholungsmöglichkeit wird im Folgesemester angeboten.

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.