Reactor Physics 2 and new Concepts in Nuclear Technology
Module PH2051
Module version of SS 2017
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | ||||||
---|---|---|---|---|---|---|
SS 2022 | SS 2021 | SS 2020 | SS 2019 | SS 2018 | SS 2017 | SS 2011 |
Basic Information
PH2051 is a semester module in German language at Master’s level which is offered in summer semester.
This Module is included in the following catalogues within the study programs in physics.
- Specific catalogue of special courses for condensed matter physics
- Specific catalogue of special courses for nuclear, particle, and astrophysics
- Specific catalogue of special courses for Applied and Engineering Physics
- Complementary catalogue of special courses for Biophysics
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 60 h | 5 CP |
Responsible coordinator of the module PH2051 in the version of SS 2017 was Peter Böni.
Content, Learning Outcome and Preconditions
Content
- Diffusion constant and Fick’s law
- Diffusion equation and boundary conditions
- Diffusion kernels
- Albedo and reflector savings
- Absorbers in neutron fields
- Multiplying media
- Eigenvalues and normal modes of a critical reactor
- Age theory (Fermi), slowing down density,lethargy, bremskernels
- Reactor poisons and burn up
- Reactivity feedback and reactivity coefficients
- Reactor types in Science and Industry
Learning Outcome
After participation in the Module the student is able to:
- Solve the neutron diffusion equation under different boundary conditions
- Understand and calculate albedo factors and reactor savings
- Understand and explain multiplying media
- Understand and explain eigenvalues and normal modes of a reactor
- Understand and explain age theory (Fermi)
- Recall reactor poisons and explain the burn up behaviour of a reactor
- Understand and explain reactivity feedback and reactivity coefficients
- Recall and explain different reactor types in Science and Industry
Preconditions
No preconditions in addition to the requirements for the Master’s program in Physics.
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VO | 2 | Reactor Physics 2 and New Concepts in Nuclear Technology |
Märkisch, B.
Assistants: Reiter, C. |
Fri, 08:30–10:00, PH HS3 |
eLearning |
UE | 2 | Exercise to Reactor Physics 2 and New Concepts in Nuclear Technology |
Bonete Wiese, D.
Responsible/Coordination: Märkisch, B. |
dates in groups |
eLearning |
Learning and Teaching Methods
The learning outcomes of the module will be acheived via frontal lecure, written and verbal lecturing and powerpoint presetations. The lecture will be complemented by a weekly exercise class, where students will solve problems in groupwork (~6-8 students) in conjunction with a tutor (PhD / scientific assistant) from the faculty.
Media
The Module consists of one lecture (2SWS) and an accompanying exercise (2SWS). The contents of the lectures will be delivered via board work and power point presentation. In addition, the students will be supported via an accompanying lecture script. The students complement the script and board work by exploring additional literature and original scientific papers. The exercise class will consist of group work (6-8 students) where the students solve problems under the guidance of a tutor; exercises will be set one week before each class.
Literature
Standard literature in reactor physics, e.g.:
- D.Emendörfer, K.H.Höcker: Theorie der Kernreaktoren (B I Wissenschaftsverlag)
- K.H.Beckurts,K.Wirtz:Neutron Physics (Springer Verlag 1964)
- A.Ziegler:Lehrbuch der Reaktortechnik (Springer Verlag 1964)
- S.Glasstone,M.C.Edlund:Kernreaktortheorie (Springer Verlag 1961)
Module Exam
Description of exams and course work
In a written exam (for about 60 minutes) the learning outcome is tested using comprehension questions and sample problems.
In this case of an oral exam (e. g. due to the number of students) the time duration is 25 minutes.
Exam Repetition
The exam may be repeated at the end of the semester. There is a possibility to take the exam in the following semester.
Current exam dates
Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.
Title | |||
---|---|---|---|
Time | Location | Info | Registration |
Exam to Reactor physics 2 and new concepts in nuclear technology | |||
Mon, 2023-07-17 till 23:55 | Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin vor 16.09.2023. // Dummy date. Contact examiner for individual appointment. Registration for exam date before 2023-Sep-16. | till 2023-06-30 (cancelation of registration till 2023-07-16) | |
Mon, 2023-09-18 till 23:55 | Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin zwischen 18.09.2023 und 21.10.2023. // Dummy date. Contact examiner for individual appointment. Registration for exam date between 2023-Sep-18 and 2023-Oct-21. | till 2023-09-17 |