Reactor Physics 2 and new Concepts in Nuclear Technology

Module PH2051

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Basic Information

PH2051 is a semester module in German language at Master’s level which is offered in summer semester.

This Module is included in the following catalogues within the study programs in physics.

  • General catalogue of special courses
  • Specific catalogue of special courses for Applied and Engineering Physics
  • Specific catalogue of special courses for condensed matter physics
  • Specific catalogue of special courses for nuclear, particle, and astrophysics

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
150 h 60 h 5 CP

Responsible coordinator of the module PH2051 is Christoph Morkel.

Content, Learning Outcome and Preconditions


  • Diffusion constant and Fick’s law
  • Diffusion equation and boundary conditions
  • Diffusion kernels
  • Albedo and reflector savings
  • Absorbers in neutron fields
  • Multiplying media
  • Eigenvalues and normal modes of a critical reactor
  • Age theory (Fermi), slowing down density,lethargy, bremskernels
  • Reactor poisons and burn up
  • Reactivity feedback and reactivity coefficients
  • Reactor types in Science and Industry

Learning Outcome

After participation in the Module the student is able to:

  1. Solve the neutron diffusion equation under different boundary conditions
  2. Understand and calculate albedo factors and reactor savings
  3. Understand and explain multiplying media
  4. Understand and explain eigenvalues and normal modes of a reactor
  5. Understand and explain age theory (Fermi)
  6. Recall reactor poisons and explain the burn up behaviour of a reactor
  7. Understand and explain reactivity feedback and reactivity coefficients
  8. Recall and explain different reactor types in Science and Industry


No preconditions in addition to the requirements for the Master’s program in Physics.

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

VU 4 Reaktorphysik 2 und neue Konzepte in der Kerntechnik Morkel, C.
Mitwirkende: Reiter, C.
Freitag, 08:30–10:00
sowie Termine in Gruppen

Learning and Teaching Methods

The learning outcomes of the module will be acheived via frontal lecure, written and verbal lecturing and powerpoint presetations. The lecture will be complemented by a weekly exercise class, where students will solve problems in groupwork (~6-8 students) in conjunction with a tutor (PhD / scientific assistant) from the faculty.


The Module consists of one lecture (2SWS) and an accompanying exercise (2SWS). The contents of the lectures will be delivered via board work and power point presentation. In addition, the students will be supported via an accompanying lecture script. The students complement the script and board work by exploring additional literature and original scientific papers. The exercise class will consist of group work (6-8 students) where the students solve problems under the guidance of a tutor; exercises will be set one week before each class.


Standard literature in reactor physics, e.g.:

  1. D.Emendörfer, K.H.Höcker: Theorie der Kernreaktoren (B I Wissenschaftsverlag)
  2. K.H.Beckurts,K.Wirtz:Neutron Physics (Springer Verlag 1964)
  3. A.Ziegler:Lehrbuch der Reaktortechnik (Springer Verlag 1964)
  4. S.Glasstone,M.C.Edlund:Kernreaktortheorie (Springer Verlag 1961)

Module Exam

Description of exams and course work

In a written exam (for about 60 minutes) the learning outcome is tested using comprehension questions and sample problems.

In this case of an oral exam (e. g. due to the number of students) the time duration is 25 minutes.

Exam Repetition

There is a possibility to take the exam at the end of the semester. There is a possibility to take the exam in the following semester.

Condensed Matter

When atoms interact things can get interesting. Fundamental research on the underlying properties of materials and nanostructures and exploration of the potential they provide for applications.

Nuclei, Particles, Astrophysics

A journey of discovery to understanding our world at the subatomic scale, from the nuclei inside atoms down to the most elementary building blocks of matter. Are you ready for the adventure?


Biological systems, from proteins to living cells and organisms, obey physical principles. Our research groups in biophysics shape one of Germany's largest scientific clusters in this area.