Polymer Physics 1
Module PH2046
Module version of WS 2010/1
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | |||||||
---|---|---|---|---|---|---|---|
WS 2022/3 | WS 2021/2 | WS 2020/1 | WS 2019/20 | WS 2018/9 | WS 2017/8 | WS 2014/5 | WS 2010/1 |
Basic Information
PH2046 is a semester module in English language at Master’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
- Specific catalogue of special courses for condensed matter physics
- Specific catalogue of special courses for Applied and Engineering Physics
- Complementary catalogue of special courses for nuclear, particle, and astrophysics
- Complementary catalogue of special courses for Biophysics
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 75 h | 5 CP |
Responsible coordinator of the module PH2046 in the version of WS 2010/1 was Peter Müller-Buschbaum.
Content, Learning Outcome and Preconditions
Content
This module gives an introduction into polymer physics: 1. Traditional and modern applications of polymers: from plastics to functional materials. 2. Nomenclature for the description of polymers and statistical models to describe the chain conformation. 3. Methods for the characterization of the molar mass and the radius of gyration of polymers in solution. 4. Phase diagrams of polymer solutions and blends: thermodynamic description, discussion of the free energy, construction of phase diagrams, description of demixing mechanisms. 5. Mechanical properties of polymers: methods and moduli, creep, relaxatin and oscillatory experiments, viscoelastic polymer melts and cross-linked rubber. 6. Electrical properties of polymers: conducting polymers, preparation, conduction mechanisms, applications.
Learning Outcome
After succesful participation of this modul, the student is able to 1. remember traditional and modern applications of polymers, 2. to understand the nomenclature of polymers, 3. to understand models for the chain conformation of a single polymer, 4. to assess methods for the characterization of polymers in solution, 5. to analyze phase diagrams of polymer solutions and blends, 6. to assess characteristic properties of polymer melts, e.g. mechanical and electric properties
Preconditions
No special preconditions are necessary, apart from those needed for the admission to the master program.
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VO | 2 | Polymer Physics 1 |
Müller-Buschbaum, P.
Assistants: Körstgens, V. |
Tue, 10:00–12:00, virtuell |
eLearning documents |
UE | 2 | Exercise to Polymer Physics 1 |
Tian, T.
Xiao, T.
Responsible/Coordination: Müller-Buschbaum, P. |
dates in groups |
eLearning documents |
RE | 2 | Lecturer's consulting hour to Polymer Physics I |
Körstgens, V.
Responsible/Coordination: Müller-Buschbaum, P. |
dates in groups |
Learning and Teaching Methods
Lecture, beamer presentation, blackboard, exercises individual and in groups
Media
exercise sheets
Literature
M. Rubinstein, R.H. Colby: Polymer Physikcs, Oxford 2003. G. Strobl: The Physics of Polymers. Concepts for Understanding their Structures and Behavior: Concepts for Understanding Their Structures and Behavior; Springer, Berlin; Auflage: 3rd rev. and exp. ed. (Februar 2007) U. W. Gedde: Polymer Physics; Springer-Verlag GmbH; Auflage: 1 (September 2007) J.M.G. Cowie: Polymers: Chemistry & Physics of Modern Materials, CRC 1991. 22. IFF-Ferienkurs: Physik der Polymere; Forschungszentrum Jülich (1991), ISBN 3-89336-055-7
Module Exam
Description of exams and course work
In an oral exam the learning outcome is tested using comprehension questions and sample problems.
In accordance with §12 (8) APSO the exam can be done as a written test. In this case the time duration is 60 minutes.
Remarks on associated module exams
The exam for this module can be taken together with the exam to the associated follow-up module PH2047: Polymer Physics 2 / Polymerphysik 2 after the follwoing semester. In this case you need to register for both exams in the following semester.
Exam Repetition
The exam may be repeated at the end of the semester. There is a possibility to take the exam in the following semester.
Current exam dates
Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.
Title | |||
---|---|---|---|
Time | Location | Info | Registration |
Exam to Polymer Physics 1 | |||
Mon, 2024-02-05 till 23:55 | Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin vor 23.03.2024. // Dummy date. Contact examiner for individual appointment. Registration for exam date before 2024-Mar-23. | till 2024-01-15 (cancelation of registration till 2024-02-04) | |
Mon, 2024-03-25 till 23:55 | Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin zwischen 25.03.2024 und 20.04.2024. // Dummy date. Contact examiner for individual appointment. Registration for exam date between 2024-Mar-25 and 2024-Apr-20. | till 2024-03-24 |