Quantum Field Theory

Module PH2041

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of WS 2016/7 (current)

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

available module versions
WS 2016/7WS 2015/6WS 2013/4WS 2010/1

Basic Information

PH2041 is a semester module in English or German language at Master’s level which is offered in winter semester.

This Module is included in the following catalogues within the study programs in physics.

  • Catalogue of required electives in theory for the Master programme Physics (Nuclear, Particle, and Astrophysics)
  • General catalogue of special courses
  • Specific catalogue of special courses for nuclear, particle, and astrophysics

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
300 h 110 h 10 CP

Responsible coordinator of the module PH2041 is Martin Beneke.

Content, Learning Outcome and Preconditions

Content

  • Functional (path integral) quantisation of bosonic and fermionic fields
  • Green functions
  • Perturbation expansion, Feynman diagrams
  • Particle states, LSZ reduction and cross sections
  • Gauge invariance and quantisation of non-abelian gauge theories
  • Ward-Takahashi identities
  • Loop calculations and UV regularisation
  • Dimensional regularisation
  • Renormalisation, in particular of gauge theories
  • Next-to-leading order effects in gauge theories (e.g. anomalous
  • magnetic moment, infrared divergences and soft bremsstrahlung)
  • Effective field theory
  • Renormalisation group, running couplings and masses

Learning Outcome

After successful completion of the module the student will be prepared

  • to compute Green functions in perturbation theory, including loop corrections, and apply these to calculations of high-energy reactions;
  • to quantise non-Abelian gauge theory and to calculate tree- and loop processes;
  • to understand the concepts of regularisation and renormalisation and to apply these in calculations;
  • to improve perturbative calculations using the renormalisation group;
  • to construct effective quantum field theories.

Preconditions

no info

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

ArtSWSTitelDozent(en)Termine
VU 6 Quantum Field Theory Beneke, M. Dienstag, 12:00–14:00
Donnerstag, 08:30–10:00
sowie Termine in Gruppen

Learning and Teaching Methods

The course is accompanied by homework problems.

Media

Blackboard, possibly supplemented with slides.

Literature

  • Peskin & Schroeder, "An Introduction to Quantum Field Theory"
  • Itykson & Zuber, "Quantum Field Theory"
  • Bailin & Love, "Introduction to Gauge Field Theories"

Module Exam

Description of exams and course work

The learning outcome is tested in a written exam of 180 minutes duration. Participation in tutorials is strongly recommended.

There will be a bonus (one intermediate stepping of "0,3" to the better grade) on passed module exams (4,3 is not upgraded to 4,0). The bonus is applicable to the exam period directly following the lecture period (not to the exam repetition) and subject to the following conditions

  1. The student prepared at least 50% of the exercises on the exercise sheets and
  2. presented at least three exercises at the blackboard and
  3. actively participated in the tutorials.

Exam Repetition

There is a possibility to take the exam at the end of the semester.

Current exam dates

Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.

Title
TimeLocationInfoRegistration
Prüfung zu Quantenfeldtheorie
Do, 2.3.2017, 13:30 bis 16:30 Physik I: 2502
Studierende im Masterstudiengang Physik (Kern-, Teilchen- und Astrophysik) beachten die besonderen Hinweise zur Prüfungsanmeldung im Wahlpflichtfach theoretische Physik! // Students in the Master’s programme Physics (Nuclear, Particle, and Astrophysics) check the notice on exam registration for the required elective module in theoretical physics! https://www.ph.tum.de/academics/msc/theory/ bis 15.1.2017 (Abmeldung bis 23.2.2017)
Mi, 19.4.2017, 9:30 bis 12:30 Physik I: 2502
Studierende im Masterstudiengang Physik (Kern-, Teilchen- und Astrophysik) beachten die besonderen Hinweise zur Prüfungsanmeldung im Wahlpflichtfach theoretische Physik! // Students in the Master’s programme Physics (Nuclear, Particle, and Astrophysics) check the notice on exam registration for the required elective module in theoretical physics! https://www.ph.tum.de/academics/msc/theory/ bis 3.4.2017 (Abmeldung bis 12.4.2017)

Condensed Matter

When atoms interact things can get interesting. Fundamental research on the underlying properties of materials and nanostructures and exploration of the potential they provide for applications.

Nuclei, Particles, Astrophysics

A journey of discovery to understanding our world at the subatomic scale, from the nuclei inside atoms down to the most elementary building blocks of matter. Are you ready for the adventure?

Biophysics

Biological systems, from proteins to living cells and organisms, obey physical principles. Our research groups in biophysics shape one of Germany's largest scientific clusters in this area.