Plasma Physics 1
Module PH2035
Module version of WS 2014/5
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | |||||||
---|---|---|---|---|---|---|---|
WS 2022/3 | WS 2021/2 | WS 2020/1 | WS 2019/20 | WS 2018/9 | WS 2017/8 | WS 2014/5 | WS 2010/1 |
Basic Information
PH2035 is a semester module in German or English language at Master’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
- Specific catalogue of special courses for nuclear, particle, and astrophysics
- Specific catalogue of special courses for Applied and Engineering Physics
- Complementary catalogue of special courses for condensed matter physics
- Complementary catalogue of special courses for Biophysics
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 75 h | 5 CP |
Responsible coordinator of the module PH2035 in the version of WS 2014/5 was Ulrich Stroth.
Content, Learning Outcome and Preconditions
Content
This module gives an introduction into plasma physics with numerous examples of natural phenomena and technical applications. In part 1 the fundamental properties of plasmas will be introduced together with a general characterization of different types of plasmas and current diagnostic techniques. Topics addressed are charged particles in magnetic fields, adiabatic invariants, the fluid description of plasmas, magneto-hydrodynamic models, the equilibrium condition, plasma stability, the dynamics of typical plasma instabilities and Alfvén waves. The models will be applied to examples from the sun, the ionosphere, technological applications and problems from fusion research.
Learning Outcome
After successful completion of this module the student is able to
- name the main properties of plasmas and the difference to neutral gases,
- describe the dynamics of charged particles in magnetic fields and explain fundamental concepts of magnetic confinement,
- investigate the stability properties of specific plasmas
- illustrate the dynamics of typical plasma instabilities and Alfvén waves
- to describe, on the basis of the learned fundamentals, plasma-diagnostical and technical applications
Preconditions
Lectures up to the Bachelor level
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VO | 2 | Plasma Physics 1 | Stroth, U. |
Thu, 08:30–10:00, PH HS3 |
eLearning documents virt. lecturehall |
UE | 2 | Exercise to Plasma Physics 1 |
Griener, M.
Responsible/Coordination: Stroth, U. |
eLearning documents virt. lecturehall |
Learning and Teaching Methods
Lecture, Beamer presentation, black board, exercises, discussion, films
Media
Exercises, internet pages, additional literature
Literature
- U. Stroth, Plasmaphysik, Phänomene, Grundlagen, Anwendungen, VIEWEG+TEUBNER Press, New York", Wiesbaden 2011
- R.J. Goldston, P.H. Rutherford, "Plasmaphysik. Eine Einführung", Vieweg 1998, ISBN: 3-528-06884-1,
- T.J.M. Boyd and J.J. Sanderson, "The Physics of Plasmas", Cambridge University Press 2003, ISBN: 0 521 459125,
- F.F. Chen, "Plasma Physics and Controlled Fusion", Plenum Press, 1990, ISBN: 0-306-41332-9,
Module Exam
Description of exams and course work
In an oral exam the learning outcome is tested using comprehension questions and sample problems.
In accordance with §12 (8) APSO the exam can be done as a written test. In this case the time duration is 60 minutes.
Remarks on associated module exams
The exam for this module can be taken together with the exam to the associated follow-up module PH2036: Plasmaphysik 2 / Plasma Physics 2 after the follwoing semester. In this case you need to register for both exams in the following semester.
Exam Repetition
The exam may be repeated at the end of the semester. There is a possibility to take the exam in the following semester.
Current exam dates
Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.
Title | |||
---|---|---|---|
Time | Location | Info | Registration |
Exam to Plasma Physics 1 | |||
Tue, 2023-08-01 till 23:59 | Lehrveranstaltungen zu diesem Modul waren im WS 2022/3. Courses to this module were in WS 2022/3. | till 2023-07-17 | |
Thu, 2023-09-28 till 23:59 | Lehrveranstaltungen zu diesem Modul waren im WS 2022/3. Courses to this module were in WS 2022/3. | till 2023-09-01 |