Spin Electronics
Module PH2034
Module version of SS 2016
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | |||||||
---|---|---|---|---|---|---|---|
SS 2022 | SS 2021 | SS 2020 | SS 2019 | SS 2018 | SS 2017 | SS 2016 | SS 2011 |
Basic Information
PH2034 is a semester module in German language at Master’s level which is offered in summer semester.
This Module is included in the following catalogues within the study programs in physics.
- Specific catalogue of special courses for condensed matter physics
- Specific catalogue of special courses for Applied and Engineering Physics
- Complementary catalogue of special courses for nuclear, particle, and astrophysics
- Complementary catalogue of special courses for Biophysics
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 60 h | 5 CP |
Responsible coordinator of the module PH2034 in the version of SS 2016 was Mathias Weiler.
Content, Learning Outcome and Preconditions
Content
1) Magnetoelectronics - positive magnetoresistance - negative magnetoresistance - anisotropic magnetoresistance - AMR (spin-orbit coupling and magnetic resistance) - Colossal magnetoresistance - CMR (manganates, Goodenough-Kanamori-Anderson rules, super and double exchange) - giant magnetoresistance - GMR (Oscillating exchange coupling, exchange anisotropy, artificial antiferromagnets, Intrinsic and extrinsic GMR) - Spin Valves - tunnel magnetoresistance - TMR (elastic tunneling through 1D barriers, conductor/ insulator /conductor, conductor/ insulator /superconductor contacts, ferromagnet / insulator / superconductor contacts, quasiparticles density of states in superconductors, density and spin polarization in ferromagnet ferromagnet / insulator / ferromagnet contacts and Julliere model, band structure effects, spin-filter) - Unusual magnetoresistance - EMR 2) spintronics - spin injection into semiconductors - spin-LEDs and spin-transistors 3) applications - XMR sensors - magnetoresistive read heads, hard drives - Magnetic Random Access Memory - MRAM
Learning Outcome
After successful completion of this module, the student is able
- to understand explain and compare magneto-Resisitive effects (anistrope magnetoresistance, colossal magnetoresistance, giant magnetoresistance, tunneling magnetoresistance)
- to describe the magnetization and magnetoresistance curves of ferromagnetic layers and multilayers as a function of the magnetic field
- to name elemental ferromagnets, some technically relevant soft and hard magnetic materials, as well as typical materials in magneto-electronic layer structures with the appropriate material parameters (Curie temperature, remanence, coercive field)
- to calculate magnetoresistance effects with Boltzmann transport theory and tunneling theory in the one-dimensional limit
- to describe ferromagnet / superconductor and ferromagnet / insulator / superconductor contacts
- to designate and analyze applications for magneto-resistive effects.
Preconditions
No preconditions in addition to the requirements for the Master’s program in Physics.
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VU | 3 | Spin electronics | Gönnenwein, S. |
singular or moved dates and dates in groups |
documents |
Learning and Teaching Methods
Lecture, beamer and blackboard presentation, discussion
Media
Übungsblätter, begleitende Internetseite
Literature
- R. Gross & A. Marx, Vorlesungsskript Spinelektronik, Walther-Meissner-Institut, Garching (2005).
- S. Blundell, Magnetism in Condensed Matter, Oxford University Press, New York (2001).
- R.C. O'Handley, Modern magnetic materials - principles and applications, Wiley, New York (2000)
- D.D. Awschalom, D. Loss, N. Samarth (eds.), Semiconductor Spintronics and Quantum Computation, Springer, Berlin (2002).
- S. Maekawa (ed.), Concepts in Spin Electronics, Oxford University Press, New York (2006).
Module Exam
Description of exams and course work
In an oral exam the learning outcome is tested using comprehension questions and sample problems.
In accordance with §12 (8) APSO the exam can be done as a written test. In this case the time duration is 60 minutes.
Exam Repetition
The exam may be repeated at the end of the semester. There is a possibility to take the exam in the following semester.
Current exam dates
Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.
Title | |||
---|---|---|---|
Time | Location | Info | Registration |
Exam to Spin Electronics | |||
Mon, 2023-09-18 till 23:55 | Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin zwischen 18.09.2023 und 21.10.2023. // Dummy date. Contact examiner for individual appointment. Registration for exam date between 2023-Sep-18 and 2023-Oct-21. | till 2023-09-17 | |
Mon, 2023-09-18 till 23:55 | Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin zwischen 18.09.2023 und 21.10.2023. // Dummy date. Contact examiner for individual appointment. Registration for exam date between 2023-Sep-18 and 2023-Oct-21. | till 2023-09-17 |