Spin Electronics

Module PH2034

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of SS 2011

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

available module versions
SS 2016SS 2011

Basic Information

PH2034 is a semester module in German language at Master’s level which is offered in summer semester.

This Module is included in the following catalogues within the study programs in physics.

  • General catalogue of special courses
  • Specific catalogue of special courses for Applied and Engineering Physics
  • Specific catalogue of special courses for condensed matter physics

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
150 h 60 h 5 CP

Responsible coordinator of the module PH2034 in the version of SS 2011 was Hans Hübl.

Content, Learning Outcome and Preconditions

Content

1) Magnetoelectronics - positive magnetoresistance - negative magnetoresistance - anisotropic magnetoresistance - AMR (spin-orbit coupling and magnetic resistance) - Colossal magnetoresistance - CMR (manganates, Goodenough-Kanamori-Anderson rules, super and double exchange) - giant magnetoresistance - GMR (Oscillating exchange coupling, exchange anisotropy, artificial antiferromagnets, Intrinsic and extrinsic GMR) - Spin Valves - tunnel magnetoresistance - TMR (elastic tunneling through 1D barriers, conductor/ insulator /conductor, conductor/ insulator /superconductor contacts, ferromagnet / insulator / superconductor contacts, quasiparticles density of states in superconductors, density and spin polarization in ferromagnet ferromagnet / insulator / ferromagnet contacts and Julliere model, band structure effects, spin-filter) - Unusual magnetoresistance - EMR  2) spintronics - spin injection into semiconductors - spin-LEDs and spin-transistors 3) applications - XMR sensors - magnetoresistive read heads, hard drives - Magnetic Random Access Memory - MRAM 

Learning Outcome

After successful completion of this module, the student is able

  1. to understand explain and compare magneto-Resisitive effects (anistrope magnetoresistance, colossal magnetoresistance, giant magnetoresistance, tunneling magnetoresistance)
  2. to describe the magnetization and magnetoresistance curves of ferromagnetic layers and multilayers as a function of the magnetic field
  3. to name elemental ferromagnets, some technically relevant soft and hard magnetic materials, as well as typical materials in magneto-electronic layer structures with the appropriate material parameters (Curie temperature, remanence, coercive field)
  4. to calculate magnetoresistance effects with Boltzmann transport theory and tunneling theory in the one-dimensional limit
  5. to describe ferromagnet / superconductor and ferromagnet / insulator / superconductor contacts 
  6. to designate and analyze applications for magneto-resistive effects. 

Preconditions

No preconditions in addition to the requirements for the Master’s program in Physics.

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

ArtSWSTitelDozent(en)Termine
VU 3 Spin electronics Weiler, M. Dienstag, 13:30–15:00
sowie Termine in Gruppen

Learning and Teaching Methods

Lecture, beamer and blackboard presentation, discussion

Media

Übungsblätter, begleitende Internetseite

Literature

  • R. Gross & A. Marx, Vorlesungsskript Spinelektronik, Walther-Meissner-Institut, Garching (2005).
  • S. Blundell, Magnetism in Condensed Matter, Oxford University Press, New York (2001).
  • R.C. O'Handley, Modern magnetic materials - principles and applications, Wiley, New York (2000)
  • D.D. Awschalom, D. Loss, N. Samarth (eds.), Semiconductor Spintronics and Quantum Computation, Springer, Berlin (2002).
  • S. Maekawa (ed.), Concepts in Spin Electronics, Oxford University Press, New York (2006).

Module Exam

Description of exams and course work

In an oral exam the learning outcome is tested using comprehension questions and sample problems.

In accordance with §12 (8) APSO the exam can be done as a written test. In this case the time duration is 60 minutes.

Exam Repetition

There is a possibility to take the exam at the end of the semester. There is a possibility to take the exam in the following semester.

Condensed Matter

When atoms interact things can get interesting. Fundamental research on the underlying properties of materials and nanostructures and exploration of the potential they provide for applications.

Nuclei, Particles, Astrophysics

A journey of discovery to understanding our world at the subatomic scale, from the nuclei inside atoms down to the most elementary building blocks of matter. Are you ready for the adventure?

Biophysics

Biological systems, from proteins to living cells and organisms, obey physical principles. Our research groups in biophysics shape one of Germany's largest scientific clusters in this area.