Superconductivity and Low Temperature Physics 2
Module PH2032
Module version of WS 2010/1
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | |||||
---|---|---|---|---|---|
SS 2022 | SS 2021 | SS 2020 | SS 2019 | SS 2018 | WS 2010/1 |
Basic Information
PH2032 is a semester module in German or English language at Master’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
- Specific catalogue of special courses for condensed matter physics
- Specific catalogue of special courses for Applied and Engineering Physics
- Complementary catalogue of special courses for nuclear, particle, and astrophysics
- Complementary catalogue of special courses for Biophysics
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 75 h | 5 CP |
Responsible coordinator of the module PH2032 in the version of WS 2010/1 was Rudolf Gross.
Content, Learning Outcome and Preconditions
Content
This module provides a detailed discussion of the fascinating properties of quantum fluids, mesoscopic solid state systems (nanostructures) as well as experimental low temperature techniques. The following specific topics will be addressed:
- Bose-Einstein condensation
- superfluid Helium-3 and Helium-4
- Quantum interference effects in mesoscopic metallic systems (weak localization, universal conductance fluctuations, etc.)
- Coulomb blockade and single electron transistors
- generation of low temperatures
- measurement of low temperatures
Learning Outcome
By the participation in this module the students acquire profound knowledge on the topics quantum fluids, mesoscopic systems as well as experimental low temperature techniques. This allows them to understand, analyze and to evaluate specific problems to the following aspects:
1) Bose-Einstein condensation, 2) superfluid Helium-3 and Helium-4, 3) Quantum interference effects in mesoscopic metallic systems (weak localization, universal conductance fluctuations, etc.), 4) Coulomb blockade and single electron transistors, 5) generation of low temperatures, 6) measurement of low temperatures.
Preconditions
Basic knowledge on condensed matter physics and quantum mechanics.
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VO | 2 | Superconductivity and Low Temperature Physics 2 | Gross, R. |
Thu, 12:00–14:00, PH HS3 |
documents |
UE | 2 | Tutorial to Superconductivity and Low Temperature Physics 2 |
Responsible/Coordination: Gross, R. |
dates in groups |
eLearning documents |
Learning and Teaching Methods
Lecture, beamer presentation, blackboard work, exercises in groups, discussions.
Media
Lecture Notes, exercise sheets, supplementary literature.
Literature
- Handouts
- Enns/Hunklinger: Low Temperature Physics
- Heinzel: Mesoscopic Electronics in Solid State Nanostructures
- Pobell: Matter and Methods at Low Temperatures
- Kent: Experimental Low Temperature Physics
Module Exam
Description of exams and course work
In an oral exam the learning outcome is tested using comprehension questions and sample problems.
In accordance with §12 (8) APSO the exam can be done as a written test. In this case the time duration is 60 minutes.
Exam Repetition
The exam may be repeated at the end of the semester. There is a possibility to take the exam in the following semester.
Current exam dates
Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.
Title | |||
---|---|---|---|
Time | Location | Info | Registration |
Exam to Superconductivity and Low Temperature Physics 2 | |||
Mon, 2023-07-17 till 23:55 | Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin vor 16.09.2023. // Dummy date. Contact examiner for individual appointment. Registration for exam date before 2023-Sep-16. | till 2023-06-30 (cancelation of registration till 2023-07-16) | |
Mon, 2023-09-18 till 23:55 | Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin zwischen 18.09.2023 und 21.10.2023. // Dummy date. Contact examiner for individual appointment. Registration for exam date between 2023-Sep-18 and 2023-Oct-21. | till 2023-09-17 |