Superconductivity and Low Temperature Physics 1
Module PH2031
Module version of WS 2010/1
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | ||||||
---|---|---|---|---|---|---|
WS 2022/3 | WS 2021/2 | WS 2020/1 | WS 2019/20 | WS 2018/9 | WS 2017/8 | WS 2010/1 |
Basic Information
PH2031 is a semester module in German or English language at Master’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
- Specific catalogue of special courses for condensed matter physics
- Specific catalogue of special courses for Applied and Engineering Physics
- Complementary catalogue of special courses for nuclear, particle, and astrophysics
- Complementary catalogue of special courses for Biophysics
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 75 h | 5 CP |
Responsible coordinator of the module PH2031 in the version of WS 2010/1 was Rudolf Gross.
Content, Learning Outcome and Preconditions
Content
This module provides a detailed discussion of the fascinating properties and applications of superconductivity. The following specific topics will be addressed:
- history of superconductivity
- foundations (superconducting materials,superconductors in an applied magnetic field, type-I and type-II superconductors, thermodynamics of superconductors)
- phenomenological description of superconductivity (London- and Ginzburg-Landau theory)
- flux quantization, Josephson-effects, superconducting quantum interference devices
- foundation of the microscopic (BCS) theory
- critical currents of superconductors
- foundations of high temperature superconductivity
- applications of superconductivity
Learning Outcome
By the participation in this module the students acquire profound knowledge on the topic superconductivity. This allows them to understand, analyze and to evaluate specific problems to the following aspects: 1) history of superconductivity, 2) foundations (superconducting materials,superconductors in an applied magnetic field, type-I and type-II superconductors, thermodynamics of superconductors), 3) phenomenological description of superconductivity (London- and Ginzburg-Landau theory), 4) flux quantization, Josephson-effects, superconducting quantum interference devices, 5) foundation of the microscopic (BCS) theory, 6) critical currents of superconductors, 7) foundations of high temperature superconductivity, 8) applications of superconductivity.
Preconditions
Basic knowledge on condensed matter physics and quantum mechanics
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VO | 2 | Superconductivity and Low Temperature Physics 1 | Gross, R. |
Thu, 12:00–14:00, PH HS3 |
eLearning documents |
UE | 2 | Exercise to Superconductivity and Low Temperature Physics 1 | Gross, R. | dates in groups |
eLearning documents |
Learning and Teaching Methods
Lecture, beamer presentation, blackboard work, exercises in groups, discussions.
Media
Lecture Notes, exercise sheets, supplementary literature.
Literature
- Lecture notes and handouts
- Tinkham: Introduction to Superconductivity
- Fossheim, Sudbo: Superconductivity - Physics and Applications
- Buckel, Kleiner: Supraleitung
- de Gennes: Superconductivity of Metals and Alloys
Module Exam
Description of exams and course work
In an oral exam the learning outcome is tested using comprehension questions and sample problems.
In accordance with §12 (8) APSO the exam can be done as a written test. In this case the time duration is 60 minutes.
Remarks on associated module exams
The exam for this module can be taken together with the exam to the associated follow-up module PH2032: Supraleitung und Tieftemperaturphysik 2 / Superconductivity and Low Temperature Physics 2 after the follwoing semester. In this case you need to register for both exams in the following semester.
Exam Repetition
The exam may be repeated at the end of the semester. There is a possibility to take the exam in the following semester.
Current exam dates
Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.
Title | |||
---|---|---|---|
Time | Location | Info | Registration |
Exam to Superconductivity and Low Temperature Physics 1 | |||
Mon, 2023-07-17 till 23:55 | Dummy-Termin. Lehrveranstaltungen zu diesem Modul waren im WS 2022/3. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin vor 16.09.2023. // Dummy date. Courses to this module were in WS 2022/3. Contact examiner for individual appointment. Registration for exam date before 2023-Sep-16. | till 2023-06-30 (cancelation of registration till 2023-07-16) | |
Mon, 2023-09-18 till 23:55 | Dummy-Termin. Lehrveranstaltungen zu diesem Modul waren im WS 2022/3. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin zwischen 18.09.2023 und 21.10.2023. // Dummy date. Courses to this module were in WS 2022/3. Contact examiner for individual appointment. Registration for exam date between 2023-Sep-18 and 2023-Oct-21. | till 2023-09-17 |