Physical Biology of the Cell 1
Module PH2013
Module version of WS 2022/3 (current)
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | ||||||||
---|---|---|---|---|---|---|---|---|
WS 2022/3 | WS 2021/2 | WS 2020/1 | WS 2019/20 | WS 2018/9 | WS 2017/8 | WS 2016/7 | WS 2015/6 | WS 2010/1 |
Basic Information
PH2013 is a semester module in English language at Master’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
- Specific catalogue of special courses for Biophysics
- Specific catalogue of special courses for Applied and Engineering Physics
- Focus Area Bio-Sensors in M.Sc. Biomedical Engineering and Medical Physics
- Elective Modules Natural Sciences in the Master Program Matter to Life
- Complementary catalogue of special courses for condensed matter physics
- Complementary catalogue of special courses for nuclear, particle, and astrophysics
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 30 h | 5 CP |
Responsible coordinator of the module PH2013 is Hendrik Dietz.
Content, Learning Outcome and Preconditions
Content
- Life at low Reynolds Numbers: fluid mechanics
- Basics of diffusion
- Gene regulation
- Basic principles of bimolecular reactions
- Conformational kinetics
- Enzyme kinetics
- Polymer elasticity and random walks
- Physics of membranes
Learning Outcome
After successful completion of the module the students are able to:
- describe the bimolecular reactions kinetics and the effect of forces on the transition rates
- define and use the concepts of entropy elasticity, transition state and dissociation constant
- describe basic principles of enzymatic catalysis
Preconditions
no special requirements
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VU | 4 | Physical Biology of the Cell 1 – mechanics of biological macro molecules | Dietz, H. |
Tue, 16:00–18:00, PH HS3 and dates in groups |
Learning and Teaching Methods
In the thematically structured lecture the learning content is presented. With cross references between different topics the universal concepts in biophysics are shown. In scientific discussions the students are involved to stimulate their analytic-physics intellectual power. The lecture is based on original publications, which are used to encourage students for more extensive literature search and reading.
Media
Lecture, presentation, blackboard, exercises, publications, demonstration experiments
Literature
- T. Bornschögl, H. Dietz: Biophysik in der Zelle, Springer (2021)
- J. Howard: Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates, (2001)
- P. Nelson: Biological Physics: Energy, Information, Life, W.H. Freeman, (2007)
- R. Philipps: Physical Biology of the Cell, Garland Science, (2013)
- U. Alon: An Introduction to Systems Biology: Design Principles of Biological Circuits, Taylor & Francis, (2019)
- M. Ptashne: Genes & Signals, CSHL Press, (2002)
- L. Stryer: Biochemistry, W.H. Freeman, (2015)
- B. Alberts: Molecular Biology of the Cell, Norton & Company, (2014)
Module Exam
Description of exams and course work
There will be a written exam of 60 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using comprehension questions and sample calculations.
For example an assignment in the exam might be:
- Can you describe the force extension of a freely jointed chain and compare it to the worm like chain model
- What are the methods to determine the viscoelastic behavior of materials?
- Can you describe the existing models of cell migration?
Exam Repetition
The exam may be repeated at the end of the semester.
Current exam dates
Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.
Title | |||
---|---|---|---|
Time | Location | Info | Registration |
Exam to Physical Biology of the Cell 1 | |||
Fri, 2024-03-01, 11:00 till 12:30 | 1450 1450 |
till 2024-01-15 (cancelation of registration till 2024-02-23) | |
Mon, 2024-03-25, 11:00 till 12:30 | 1450 1450 |
till 2024-03-21 |