Quantum Mechanics 2
Module PH1002 [ThPh KTA]
Module version of WS 2019/20 (current)
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions  

WS 2019/20  WS 2018/9  WS 2017/8  WS 2016/7  WS 2015/6  WS 2010/1 
Basic Information
PH1002 is a semester module in English or German language at Master’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
 Theory courses for nuclear, particle, and astrophysics
 Complementary catalogue of special courses for condensed matter physics
 Complementary catalogue of special courses for Biophysics
 Complementary catalogue of special courses for Applied and Engineering Physics
 Specialization Modules in EliteMaster Program Theoretical and Mathematical Physics (TMP)
If not stated otherwise for export to a nonphysics program the student workload is given in the following table.
Total workload  Contact hours  Credits (ECTS) 

300 h  90 h  10 CP 
Responsible coordinator of the module PH1002 is Nora Brambilla.
Content, Learning Outcome and Preconditions
Content
1. Time dependent perturbation theory.
2. Scattering theory.
3. Particles in electromagnetic fields and quantum theory of radiation.
4. Atomic transitions, multipole expansion, selection rules
5. Systems of identical particles. many body physics
Learning Outcome
After successfully taking part in this module the students are able to:
1 Derive Fermi's golden rule and apply it to calculate transition probabilities,
2 Calculate the scattering amplitude and the differential crosssection in a scattering process,
3 Derive the optical theorem and understand its consequences,
4 Writedown the wave function of a system of bosons or fermions,
5 Calculate approximately the energy spectrum of an atom with many electrons,
6 Understand the formalism of "second quantization",
Preconditions
No prerequisites that are not already included in the prerequisites for the Master’s programmes.
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type  SWS  Title  Lecturer(s)  Dates  Links 

VO  4  Quantum Mechanics 2  Garbrecht, B. 
Wed, 12:00–14:00, virtuell Fri, 10:00–12:00, virtuell 

UE  2  Exercise to Quantum Mechanics 2 
Responsible/Coordination: Garbrecht, B. 
dates in groups 
Learning and Teaching Methods
The modul consists of a lecture and exercise classes.
In the thematically structured lecture the learning content is presented. With cross references between different topics the universal concepts in physics are shown. In scientific discussions the students are involved to stimulate their analyticphysics intellectual power.
In the exercise the learning content is deepened and exercised using problem examples and calculations. Thus the students are able to explain and apply the learned physics knowledge independently.
Media
Blackboard, Script, slides if available
Literature
 C. CohenTannoudji, B. Diu, F. Laloe, Quantum Mechanics Vol. I and II, Wiley, 1977.
 Jun John Sakurai, Modern Quantum Mechanics, Benjamin/Cummings Publishing Company, 1985.
 A. Messiah, Quantum Mechanics I and II, Dover Publ. 1995 2nd edition.
 F. Schwabl, Advanced Quantum Mechanics, SpringerVerlag 2000 (third edition).
 Relativistic Quantum Mechanics, J.D. Bjorken, S.D. Drell, MC Graw Hill Book Company; 1st edition (1964)
Module Exam
Description of exams and course work
There will be a written exam of 90 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using calculation problems and comprehension questions.
For example an assignment in the exam might be:
 Calculate transition probabilities for a harmonic oscillator under a small timedependent perturbation.
 Derive the selection rules and transition rates for a hydrogen atom under the influence of a radiation field.
 Calculate the phase shifts and the cross section for a nonrelativistic particle scattering off a given potential.
In the exam no learning aids are permitted.
Participation in the exercise classes is strongly recommended since the exercises prepare for the problems of the exam and rehearse the specific competencies.
There will be a bonus (one intermediate stepping of "0,3" to the better grade) on passed module exams (4,3 is not upgraded to 4,0). The bonus is applicable to the exam period directly following the lecture period (not to the exam repetition) and subject to the condition that the student passes the midterm of passing the voluntary test exam during the semester
Exam Repetition
The exam may be repeated at the end of the semester.