Theoretical Solid State Physics
Module PH1001 [ThPh KM]
Module version of WS 2022/3 (current)
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions  

WS 2022/3  WS 2021/2  WS 2020/1  WS 2019/20  WS 2018/9  WS 2017/8  WS 2016/7  WS 2010/1 
Basic Information
PH1001 is a semester module in English language at Master’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
 Theory courses for condensed matter physics
 Complementary catalogue of special courses for nuclear, particle, and astrophysics
 Complementary catalogue of special courses for Biophysics
 Complementary catalogue of special courses for Applied and Engineering Physics
 Specialization Modules in EliteMaster Program Theoretical and Mathematical Physics (TMP)
If not stated otherwise for export to a nonphysics program the student workload is given in the following table.
Total workload  Contact hours  Credits (ECTS) 

300 h  90 h  10 CP 
Responsible coordinator of the module PH1001 is Frank Pollmann.
Content, Learning Outcome and Preconditions
Content
 Phases of matter
 Scattering and static structure factor
 Theory of phonons and specific heat
 Inelastic neutron scattering, dynamic structure factor
 Linear response, fluctuationdissipation relations
 Bloch theorem, Wannier functions, band theory
 Metals and insulators, para and diamagnetism
 Semiclassical dynamics, Bloch oscillations
 Transport: Drude theory, Boltzmann equations
 Quantum Hall
 Approaching the manybody problem
 Interlude: Second quantization
 NonInteracting electron gas, Lindhard function
 Fermi liquid theory
 The interacting electron gas, HartreeFock theory
 Random phase approximation, screening, Collective excitations
 ElectronPhonon interaction, BCStheory of superconductivity
 Quantum magnetism, Hubbard model at strong and weak coupling
 Disorder and localization
Learning Outcome
Successful participation provides the following skills:

Mathematical formulation of relevant structures of matter and their atomic composition. Calculation of the structural and dynamic properties of matter in terms of simple models

Explain the physics of structural phase transitions at surfaces and for defect structures

Approximations and methods for solving many particle problems in condensed matter physics

Understand and explain the nature of correlated lowdimensional systems in the framework of Fermi or Luttinger liquid theory

Explain and theoretically describe electronic phase transitions such as superconductivity
Preconditions
No preconditions in addition to the requirements for the Master’s program in Physics.
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type  SWS  Title  Lecturer(s)  Dates  Links 

VO  4  Theoretical solid state physics  Pollmann, F. 
Tue, 10:00–12:00, PH HS3 Thu, 10:00–12:00, PH HS3 
eLearning documents 
UE  2  Open Tutorial to Theoretical Solid State Physics 
Responsible/Coordination: Pollmann, F. 
Mon, 14:00–16:00, Interims II 003 

UE  2  Exercise to Theoretical Solid State Physics 
Responsible/Coordination: Pollmann, F. 
dates in groups 
eLearning documents 
Learning and Teaching Methods
The module consists of a lecture and exercise classes.
In the thematically structured lecture the learning topics is presented. With cross references between different topics the universal concepts in physics are shown. In scientific discussions the students are involved to stimulate their analyticphysics intellectual power.
In the exercise (ca. 68 students) the learning content is deepened and exercised using problem examples and calculations. Thus the students are able to explain and apply the learned physics knowledge independently.
Media
elearning (tablet PC with voice recording for listening to parts or whole lectures/exercises), presentation documents, exercise sheets, computer simulations, accompanying website, supplementary literature
Literature
 N.W. Ashcroft and N.D. Mermin, Solid State Physics, Cengage Learning (Deutsche Ausgabe: De Gruyter Oldenbourg)
 P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press
Module Exam
Description of exams and course work
There will be a written exam of 90 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using calculation problems and comprehension questions.
For example an assignment in the exam might be:
 Calculate the spectrum of eigenfrequencies for the longitudinal vibrations of the twoatomic chain harmonic chain, assuming periodic boundary conditions.
 Determine the wavefunction from the Blochcondition for the KronigPenney model.
 Calculate the density correlation function of the noninteracting Fermi gas.
 Determine the relationship between fluctuations and dissipation.
Exam Repetition
The exam may be repeated at the end of the semester.
Current exam dates
Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.
Title  

Time  Location  Info  Registration 
Exam to Theoretical Solid State Physics  
Wed, 20240228, 13:30 till 15:00  102 102 
till 20240115 (cancelation of registration till 20240221)  
Wed, 20240327, 13:30 till 15:00  0001 0001 
till 20240325 