Theoretical Solid State Physics
Module PH1001 [ThPh KM]
Module version of WS 2022/3 (current)
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | |||||||
---|---|---|---|---|---|---|---|
WS 2022/3 | WS 2021/2 | WS 2020/1 | WS 2019/20 | WS 2018/9 | WS 2017/8 | WS 2016/7 | WS 2010/1 |
Basic Information
PH1001 is a semester module in English language at Master’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
- Theory courses for condensed matter physics
- Complementary catalogue of special courses for nuclear, particle, and astrophysics
- Complementary catalogue of special courses for Biophysics
- Complementary catalogue of special courses for Applied and Engineering Physics
- Specialization Modules in Elite-Master Program Theoretical and Mathematical Physics (TMP)
If not stated otherwise for export to a non-physics program the student workload is given in the following table.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
300 h | 90 h | 10 CP |
Responsible coordinator of the module PH1001 is Frank Pollmann.
Content, Learning Outcome and Preconditions
Content
- Phases of matter
- Scattering and static structure factor
- Theory of phonons and specific heat
- Inelastic neutron scattering, dynamic structure factor
- Linear response, fluctuation-dissipation relations
- Bloch theorem, Wannier functions, band theory
- Metals and insulators, para- and diamagnetism
- Semiclassical dynamics, Bloch oscillations
- Transport: Drude theory, Boltzmann equations
- Quantum Hall
- Approaching the many-body problem
- Interlude: Second quantization
- Non-Interacting electron gas, Lindhard function
- Fermi liquid theory
- The interacting electron gas, Hartree-Fock theory
- Random phase approximation, screening, Collective excitations
- Electron-Phonon interaction, BCS-theory of superconductivity
- Quantum magnetism, Hubbard model at strong and weak coupling
- Disorder and localization
Learning Outcome
Successful participation provides the following skills:
-
Mathematical formulation of relevant structures of matter and their atomic composition. Calculation of the structural and dynamic properties of matter in terms of simple models
-
Explain the physics of structural phase transitions at surfaces and for defect structures
-
Approximations and methods for solving many particle problems in condensed matter physics
-
Understand and explain the nature of correlated low-dimensional systems in the framework of Fermi- or Luttinger liquid theory
-
Explain and theoretically describe electronic phase transitions such as superconductivity
Preconditions
No preconditions in addition to the requirements for the Master’s program in Physics.
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VU | 6 | Theoretical solid state physics | Zwerger, W. |
Tue, 10:00–12:00, PH HS3 Thu, 10:00–12:00, PH HS3 and dates in groups |
Learning and Teaching Methods
The module consists of a lecture and exercise classes.
In the thematically structured lecture the learning topics is presented. With cross references between different topics the universal concepts in physics are shown. In scientific discussions the students are involved to stimulate their analytic-physics intellectual power.
In the exercise (ca. 6-8 students) the learning content is deepened and exercised using problem examples and calculations. Thus the students are able to explain and apply the learned physics knowledge independently.
Media
e-learning (tablet PC with voice recording for listening to parts or whole lectures/exercises), presentation documents, exercise sheets, computer simulations, accompanying website, supplementary literature
Literature
- N.W. Ashcroft and N.D. Mermin, Solid State Physics, Cengage Learning (Deutsche Ausgabe: De Gruyter Oldenbourg)
- P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press
Module Exam
Description of exams and course work
There will be a written exam of 90 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using calculation problems and comprehension questions.
For example an assignment in the exam might be:
- Calculate the spectrum of eigenfrequencies for the longitudinal vibrations of the two-atomic chain harmonic chain, assuming periodic boundary conditions.
- Determine the wave-function from the Bloch-condition for the Kronig-Penney model.
- Calculate the density correlation function of the non-interacting Fermi gas.
- Determine the relationship between fluctuations and dissipation.
Exam Repetition
The exam may be repeated at the end of the semester.
Current exam dates
Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.
Title | |||
---|---|---|---|
Time | Location | Info | Registration |
Exam to Theoretical Solid State Physics | |||
Wed, 2024-02-28, 13:30 till 15:00 | 102 102 |
till 2024-01-15 (cancelation of registration till 2024-02-21) | |
Wed, 2024-03-27, 13:30 till 15:00 | 0001 0001 |
till 2024-03-25 |