Theoretical Solid State Physics

Module PH1001 [ThPh KM]

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of WS 2010/1

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

available module versions
WS 2016/7WS 2010/1

Basic Information

PH1001 is a semester module in German language at Master’s level which is offered in winter semester.

This Module is included in the following catalogues within the study programs in physics.

  • Catalogue of required electives in theory for the Master programme Physics (Condensed Matter Physics)
  • Supplement to the general catalogue of special courses for Biophysics
  • Supplement to the general catalogue of special courses for nuclear, particle, and astrophysics

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
300 h 90 h 10 CP

Responsible coordinator of the module PH1001 in the version of WS 2010/1 was Wilhelm Zwerger.

Content, Learning Outcome and Preconditions

Content

I) Symmetries and structure of condensed matter

  1. Phases and broken symmetries
  2. Determination of structure by x-ray diffraction

II) Lattice vibrations

  1. Elasticity theory, classical lattice vibrations
  2. Phonons and thermodynamics
  3. Neutron scattering, dynamic structure factor
  4. Anharmonic effects, melting, Lindemann criterion

III) Electrons

  1. Bonding types, stability
  2. Bloch theorem, Wannier functions, band theory
  3. Fermi surfaces, Thermodynamics
  4. Semiclassical dynamics of electrons, Bloch oscillations
  5. Edge state theory of the quantum Hall effect

IV) Many particle effects and disorder

  1. Interacting electron gas, screening, Wigner lattice
  2. Density Functional Theory
  3. Electron-Phonon-Interaction, BCS-theory of superconductivity
  4. Anderson Localization

Learning Outcome

Successful participation provides the following skills:

  1. Mathematical formulation of relevant structures of matter and their atomic composition. Calculation of the structural and dynamic properties of matter in terms of simple models

  2. Explain the physics of structural phase transitions at surfaces and for defect structures

  3. Understand modern methods for calculating the electronic structure of solids. Ability to perform simple density functional calculations

  4. Approximations and methods for solving many particle problems in condensed matter physics

  5. Understand and explain the nature of correlated low-dimensional systems in the framework of Fermi- or Luttinger liquid theory

  6. Explain and theoretically describe electronic phase transitions such as superconductivity

  7. Explain and understand the Kondo effect

Preconditions

No preconditions in addition to the requirements for the Master’s program in Physics.

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

ArtSWSTitelDozent(en)Termine
VU 6 Theoretische Festkörperphysik Knap, M.
Mitwirkende: Frank, B.Lang, J.Weidinger, S.
Dienstag, 10:00–12:00
Donnerstag, 10:00–12:00
sowie Termine in Gruppen

Learning and Teaching Methods

Vortrag, Beamerpräsentation, Übungen in Einzel- und Gruppenarbeit (ca. 6-8 Studierende mit Unterstützung durch Tutor)

Media

e-Learning (Tablet-PC mit Sprachaufzeichnung zum Nachhören von Teilen oder ganzen Vorlesungen/Übungen), Präsentationsunterlagen, Übungsblätter, Computersimulationen, begleitende Internetseite, ergänzende Literatur

Die genauen Medienformen wählt der jeweilige Dozent aus.

Literature

N.W. Ashcroft and N.D. Mermin, Solid State Physics
P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics
M.P. Marder, Condensed Matter Physics
U. Rössler, Solid State Theory
J. H. Davies, The Physics of Low-Dimensional Semiconductors

Module Exam

Description of exams and course work

In einer schriftlichen Prüfung wird der Lernerfolg anhand von Verständnisfragen und Rechenbeispielen überprüft.

Die Prüfung kann in Übereinstimmung mit §12 (8) APSO auch mündlich abgehalten werden, in diesem Fall ist der Richtwert für die Prüfungsdauer 30 Minuten.

Exam Repetition

There is a possibility to take the exam at the end of the semester.

Current exam dates

Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.

Title
TimeLocationInfoRegistration
Prüfung zu Theoretische Festkörperphysik
Mo, 20.2.2017, 11:00 bis 12:30 102
Studierende im Masterstudiengang Physik (Physik der kondensierten Materie) beachten die besonderen Hinweise zur Prüfungsanmeldung im Wahlpflichtfach theoretische Physik! // Students in the Master’s program Physics (Condensed Matter Physics) check the notice on exam registration for the required elective module in theoretical physics! https://www.ph.tum.de/academics/msc/theory/ bis 15.1.2017 (Abmeldung bis 13.2.2017)
Mi, 12.4.2017, 11:00 bis 12:30 Physik I: 2501
Studierende im Masterstudiengang Physik (Physik der kondensierten Materie) beachten die besonderen Hinweise zur Prüfungsanmeldung im Wahlpflichtfach theoretische Physik! // Students in the Master’s program Physics (Condensed Matter Physics) check the notice on exam registration for the required elective module in theoretical physics! https://www.ph.tum.de/academics/msc/theory/ bis 3.4.2017 (Abmeldung bis 5.4.2017)

Condensed Matter

When atoms interact things can get interesting. Fundamental research on the underlying properties of materials and nanostructures and exploration of the potential they provide for applications.

Nuclei, Particles, Astrophysics

A journey of discovery to understanding our world at the subatomic scale, from the nuclei inside atoms down to the most elementary building blocks of matter. Are you ready for the adventure?

Biophysics

Biological systems, from proteins to living cells and organisms, obey physical principles. Our research groups in biophysics shape one of Germany's largest scientific clusters in this area.