de | en

Condensed Matter Physics 2

Module PH0018 [KM Expert 2]

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of SS 2018 (current)

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

available module versions
SS 2018SS 2017SS 2011

Basic Information

PH0018 is a semester module in German language at Bachelor’s level which is offered in summer semester.

This Module is included in the following catalogues within the study programs in physics.

  • Mandatory Modules in Bachelor Programme Physics (6th Semester, Specialization KM)

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
270 h 90 h 9 CP

Responsible coordinator of the module PH0018 is Rudolf Gross.

Content, Learning Outcome and Preconditions



  • Fermi surfaces of real metals
  • magnetoresistance
  • quantum oscillations


  • basic properties
  • inhomogeneous semiconductors and related devices
  • low-dimensional electron systems
  • quantum Hall effects

Dielectric solids

  • macroscopic electrodynamics vs microscopic theory
  • electronic, ionic polarisation and dipole orientation
  • dielectric properties of metals and semiconductors
  • electron-electron inteacion and screening in metals
  • phase transitions and ferroelecricity


  • atomic dia- and paramagnetism
  • para- and diamagnetism of metals
  • exchange interaction and magnetic order
  • magnetization dynamics and spin waves


  • basic properties
  • phenomenological description: London- and Ginzburg-Landau theory
  • thermodynamic properties
  • microscopic theory in a nutshell

Surface and interface physics

  • electronic properties
  • surface analysis
  • functionalized interfaces

Learning Outcome

After successful completion of the module the students are able to:

  • apply basic the concepts of Condensed Matter Physics to explain the physical properties of condensed matter by in relation to their crystalline nature and electronic band structure
  • understand the basic properties of different material classes such as metals, semiconductors, insulators and superconductors, in particular their electronic, magnetic and optical properties.
  • illustrate the impact of the pioneers in condensed matter physics for the most relevant inventions and discoveries.
  • sketch important experimental techniques in condensed matter physics for the determination of the electronic, magnetic and optical properties.
  • explain the physical properties of solids by using classical and quantum mechnical models as well as basic concepts from electrodynamics and thermodynamics
  • apply the acquired knowledge situations where condensed matter is used in every-day life, lab excercises, or experiments.
  • explain the operational principles of the most relevant solid-state device and and their applications in electronics, optoeletronics as well as sensing.


The lecture considers basic knowledge in Experimental Physics, Electromagnetism, Electrodynamics, Thermodynamics, Quantum Mechanics and Physics of Condensed Matter 1.

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

VO 4 Condensed Matter Physics 2 Gross, R. Mon, 10:00–11:30, PH HS2
Tue, 12:00–14:00, PH HS2
Mon, 12:15–14:00, PH HS2
Tue, 08:30–10:00, PH HS2
UE 2 Exercise to Condensed Matter Physics 2
Responsible/Coordination: Gross, R.
dates in groups
UE 1 Tutorial to Condensed Matter Physics 2 Gross, R. Wed, 10:00–12:00, PH HS2

Learning and Teaching Methods

The expert module Physics of Condensed Matter 2 is given as a "compact" module in the first half of the term based on 8 SWS of lecture, 2 SWS of tutorials, 2 SWS of exercises. The tutorial is used to address general questions of students and present research topics of current interest.

In the exercise the learning content is deepened and exercised using problem examples and calculations. Thus the students are able to explain and apply the learned physics knowledge independently.


Hand written notes on the tablet PC, sketches of experimental setups, presentation of relevant data using PowerPoint, handouts of relevant slides. A pdf version of the lecture content will be provided via the internet for download. At the same time, there will be exercises for download and discussion in exercise groups. 


  • R. Gross, A. Marx, (in German) "Festkörperphysik", Walther de Gruyter (2018).
  • N.W. Ashcroft, N.D Mermin, "Solid State Physics", Holt-Saunders International Editions.
  • C. Kittel, "Introduction to Solid State Physics", Wiley. 
  • Ch. Weißmantel, C. Hamann, "Grundlagen der Festkörperphysik", Wiley-VCH.
  • H. Ibach, H. Lüth, "Festkörperphysik: Einführung in die Grundlagen", Springer. 
  • W. Buckel, R. Kleiner, "Supraleitung: Grundlagen und Anwendungen", Wiley-VCH.
  • Collection of typical exam questions (in German):

Module Exam

Description of exams and course work

Das Erreichen der Lernergebnisse wird anhand einer mündlichen Prüfung (Dauer ca. 40 Minuten) bewertet. Mittels spezifischer Fragestellung wird exemplarisch überprüft, inwieweit die Studierenden in der Lage sind die grundlegende Konzepte aus der Physik der kondensierten Materie selbst anzuwenden, um physikalische Eigenschaften, die an kondensierter Materie beobachtet werden, mit der kristallinen Struktur und elektronischen Bandstrukturen in Verbindung zu bringen und zu erklären. Die möglichen Fragestelllungen konzentrieren sich auf die grundlegenden Eigenschaften von verschiedenen Materialklassen wie Metalle, Halbleiter, Isolatoren und Supraleiter und insbesondere deren elektrische, magnetische und optische Eigenschaften. Z.B müssen die Studierenden in der Lage sein, die experimentellen Methoden der Physik der kondensierten Materie zur Bestimmung der elektrischen, magnetischen und optischen Eigenschaften verschiedener Materialklassen (Metalle, Halbleiter, Isolatoren und Supraleiter) zu beschreiben und die physikalischen Eigenschaften von Festkörpern auf der Basis klassischer und quantenmechanischer Modelle sowie unter Zuhilfenahme der Elektrodynamik und Thermodynamik quantitativ zu erklären. Des Weiteren müssen die Studierenden in der Lage sein, Fragen zur Funktionsweise einiger wichtiger Bauelemente und Anwendungen in der Elektronik, Optoelektronik und Sensorik zu beantworten.

Die Teilnahme am Übungsbetrieb wird dringend empfohlen, da die Übungsaufgaben auf die in der Modulprüfung abgefragten Problemstellungen vorbereiten und somit die spezifischen Kompetenzen eingeübt werden.

Exam Repetition

The exam may be repeated at the end of the semester.

Top of page