de | en

Nuclear, Particle, and Astrophysics 2

Module PH0015 [KTA Expert 2]

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of SS 2017

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.

available module versions
SS 2023SS 2021SS 2020SS 2019SS 2018SS 2017SS 2011

Basic Information

PH0015 is a semester module in German language at Bachelor’s level which is offered in summer semester.

This Module is included in the following catalogues within the study programs in physics.

  • Mandatory Modules in Bachelor Programme Physics (6th Semester, Specialization KTA)

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
270 h 90 h 9 CP

Responsible coordinator of the module PH0015 in the version of SS 2017 was Bastian Märkisch.

Content, Learning Outcome and Preconditions


Physics of Quark- and Leptonflavors

  • Yukawa coupling and the CKM matrix
  • Flavor-oscillation in the neutral kaon and B-meson system
  • CP violation
  • Neutrino oscillations

Nuclear Physics

  • Nucleon-nucleon-interaction and the deuteron
  • Nuclear models
  • Radioactivity
  • Nuclear deformations, collective phenomena
  • Nuclear reactions
  • High-energy nuclear physics
  • Applications of nuclear physics


  • Nuclear fusion and the evolution of stars
  • Element formation and the basics of nuclear astrophysics
  • Basics of cosmology

Learning Outcome

Nach der erfolgreichen Teilnahme an dem Modul verfügen die Studierenden strukturiertes Wissen über die Grundlagen der Kern-, Teilchen- und Astrophysik und sind in der Lage die Funktionsweise und Fragestellungen moderner Teilchenphysik-Experimente zu verstehen. Sie verfügen über grundlegende Kenntnisse der elementaren Bestandteile der Materie und ihrer Wechselwirkungen, sowie zusammengesezten Systemen wie Mesonen, Baryonen und Kernen. Sie sind desweiteren in der Lage die theoretischen Grundlagen des Standardmodells der Teilchenphysik auf einfache Phänomene anzuwenden.



Courses, Learning and Teaching Methods and Literature

Courses and Schedule

VO 4 Nuclear, Particle and Astrophysics 2 Beneke, M. Fabbietti, L. Tue, 14:00–15:30, virtuell
Wed, 08:30–10:00, virtuell
Thu, 10:15–11:45, virtuell
Fri, 10:00–11:30, virtuell
UE 2 Exercise to Nuclear, Particle and Astrophysics 2
Responsible/Coordination: Fabbietti, L.
dates in groups eLearning
UE 1 Large Tutorial to Nuclear, Particle and Astrophysics 2 Beneke, M. Fabbietti, L. Fri, 12:00–14:00, virtuell
Tue, 10:00–12:00, virtuell
and singular or moved dates

Learning and Teaching Methods

Das Expert-Modul Kern-, Teilchen- und Astrophysik 2 wird in kompakter Form (8 SWS Vorlesung, 2 SWS Tutorium, 2 SWS Übung) während der ersten Hälfte des Semesters gelesen. Das Tutorium dient zur Klärung allgemeiner Fragen von Studierenden und zur Verknüpfung der Vorlesungsinhalte mit aktuellen Forschungsthemen.

Vorlesung: Frontalunterricht
Übung: Arbeitsunterricht (Übungsaufgaben rechnen), Diskussionen und weitergehende Erläuterungen zum Vorlesungsstoff


Tafelanschrieb bzw. Präsentation,
Beispielvideos (z.T. zum Download),
Vorlesungsmitschrift z.T. zum Download,
Übungsaufgaben (Fallbeispiele) und Lösungen zum Download


B. Povh, K. Rith, C. Scholz, F. Zetsche, W. Rodejohann, Teilchen und Kerne (Springer 2013)
B.R. Martin and G. Shaw, Particle Physics (Wiley 2008)
C. Berger, Elementarteilchenphysik: Von den Grundlagen zu den modernen Experimenten (Springer-Lehrbuch, 2014)

F. Halzen and A. D. Martin Quarks and Leptons: an Introductory Course in Modern Particle Physics
O. Nachtmann, Elementary Particle Physics: Concepts and Phenomena (Springer)
J.F. Donoghue, E.Golowich and B.R.Holstein, Dynamics of the Standard Model
C.Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions

Module Exam

Description of exams and course work

There will be an oral exam of 40 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using comprehension questions and sample calculations.

For example an assignment in the exam might be:

  • Discuss the conditions in the early universe required for an asymmetry between matter and anti-matter to evolve.
  • What energy is released in the fusion of deuterium and hydrogen into tritium?
  • Discuss working mechanism and special features of cancer treatment using ion beams.
  • The quark model describes hadrons as bound states of constituent quarks and anti-quarks. Give the quark/anti-quarks content of mesons and baryons and their anti-particles.
  • What are the partciles and symmetries of the theory describing the strong interaction in the standard model?
  • Give experimental evidence supporting three color charges.

Participation in the exercise classes is strongly recommended since the exercises prepare for the problems of the exam and rehearse the specific competencies.

Exam Repetition

The exam may be repeated at the end of the semester.

Top of page