de | en

# Theoretical Physics 2 (Electrodynamics)

## Module PH0006 [ThPh 2]

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

### Module version of WS 2020/1

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.

available module versions
WS 2021/2WS 2020/1WS 2019/20WS 2018/9WS 2017/8WS 2016/7WS 2010/1

### Basic Information

PH0006 is a semester module in German language at Bachelor’s level which is offered in winter semester.

This Module is included in the following catalogues within the study programs in physics.

• Mandatory Modules in Bachelor Programme Physics (3rd Semester)
• Physics Modules for Students of Education

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

240 h 120 h 8 CP

Responsible coordinator of the module PH0006 in the version of WS 2020/1 was Norbert Kaiser.

### Content, Learning Outcome and Preconditions

#### Content

Electrostatics and magnetostatics
Maxwell's theory with given charge and current distributions
Maxwell's equations in matter
Potentials, gauge transformations
Energy and momentum conservation
Waves and diffraction
Multipole expansion
Field of a moving point charge
Special theory of relativity
Stress–energy tensor

#### Learning Outcome

After successful participation, the student will be able to:
1.) solve differential equations with boundary conditions
2.) apply Maxwell's equations to compute field distributions
3.) solve wave equations in vacuum and in matter
4.) calculate fields of moving charge distributions with Greens functions
5.) calculate fields in reference frames with uniform motion
6.) understand tensor algebra and how to apply spherical harmonics.

#### Preconditions

PH0001, PH0002, PH0005, MA9201, MA9202, MA9203

for students studying bachelor of science education mathematics / physics: PH0001, PH0002, PH0005, MA9937, MA9938, MA9939, MA9940

### Courses, Learning and Teaching Methods and Literature

#### Courses and Schedule

VO 4 Theoretical Physics 2 (Electrodnamics) Garbrecht, B. Tue, 10:00–12:00, PH HS1
Fri, 10:00–12:00, PH HS1
eLearning
documents
UE 2 Open Tutorial for Theoretical Physics 2 (Electrodynamics)
Responsible/Coordination: Garbrecht, B.
Wed, 12:00–14:00, ZEI 0001
UE 2 Exercise to Theoretical Physics 2 (Electrodnamics)
Responsible/Coordination: Garbrecht, B.
dates in groups eLearning
documents
UE 2 Large Tutorial to Theoretical Physics 2 (Electrodynamics) Kaiser, N. Mon, 16:00–18:00, PH HS1
and singular or moved dates
eLearning

#### Learning and Teaching Methods

Lecture: black-board presentation

Open tutorial: The open tutorial provides the opportunity for solving the exercises for oneself or as a group. The open tutorial is overseen by different tutors an leaves room for further discussions and exchange with other students.

Tutorial: The tutorial is held in small groups. In the tutorial the weekly exercises are presented by the students and the tutor. They also provide room for discussions and additional explanations to the lectures.

#### Media

Blackboard or powerpoint presentations
Accompanying information online

#### Literature

J.D. Jackson: Klassische Elektrodynamik (W. De Gruyter, 3. Auflage 2001)
D.J. Griffiths, Introduction to Electrodynamics

### Module Exam

#### Description of exams and course work

There will be a written exam of 90 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using calculation problems and comprehension questions.

For example an assignment in the exam might be:

• calculation of the electro-magnetic field of a given distribution of charges or currents
• multipole analysis of the radiation field of an antenna

Participation in the exercise classes is strongly recommended since the exercises prepare for the problems of the exam and rehearse the specific competencies.

There will be a bonus (one intermediate stepping of "0,3" to the better grade) on passed module exams (4,3 is not upgraded to 4,0). The bonus is applicable to the exam period directly following the lecture period (not to the exam repetition) and subject to the condition that the student passes the mid-term of

• obtaining at least 50% of the points in the homework problems
• active participation in the exercise classes by presenting exercise solutions and participating in the on-topic discussions

#### Exam Repetition

The exam may be repeated at the end of the semester.

#### Current exam dates

Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.

Title
TimeLocationInfoRegistration
Exam to Theoretical Physics 2 (Electrodynamics)
Mon, 2022-02-28, 14:15 till 15:45 Bitte beachten Sie die Hinweise unter https://www.tum.de/die-tum/aktuelles/coronavirus/corona-lehre-pruefungen/. // Please read the information at https://www.tum.de/en/about-tum/news/coronavirus/corona-teaching-exams/ carefully. till 2022-01-15 (cancelation of registration till 2022-02-21)
Wed, 2022-04-06, 11:30 till 13:00 Bitte beachten Sie die Hinweise unter https://www.tum.de/die-tum/aktuelles/coronavirus/corona-lehre-pruefungen/. // Please read the information at https://www.tum.de/en/about-tum/news/coronavirus/corona-teaching-exams/ carefully. till 2022-04-03
Top of page