Experimental Physics 4

Module PH0004 [ExPh 4]

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Basic Information

PH0004 is a semester module in German language at Bachelor’s level which is offered in summer semester.

This Module is included in the following catalogues within the study programs in physics.

  • Mandatory Modules in Bachelor Programme Physics (4th Semester)
  • Physics Modules for Students of Education

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
240 h 90 h 8 CP

Responsible coordinator of the module PH0004 is Stefan Schönert.

Content, Learning Outcome and Preconditions

Content

1. Wave packets
1.1 Heisenberg uncertainty principle
1.2 Consequences of the uncertainty principle for bound states
2. Bohr model of the hydrogen atom
2.1 Franck-Hertz-experiment
2.2 limitations of the Bohr model
3. Mathematical background for quantum mechanics
3.1 The Schrödinger equation
3.2 Operators and measurement values 
3.3 Additional state equations for the wave function
3.4 Commutation relations
4. The hydrogen atom
4.1 Eigen functions of the angular momentum
4.2 The radial part of the central potential
5. The spectra of alcali atoms
6. Orbit and spin magnetism - The fine structure
6.1 Orbital magnetism
6.2 Spin magnetism
6.3 The Stern-Gerlach experiment
6.4 Spin-orbit coupling and fine structure
6.5 Lamb shift and relativistic effects
7. Atoms in magnetic fields
7.1 ESR
7.2 Zeeman effect
7.3 Paschen-Back effect
7.4 Hyperfine structure
7.5 Term table of the hydrogen atom
7.6 NMR
8. Fermions and bosons
9. Many electron systems
9.1 Coupling of angular momentum
9.1.1 L-S coupling
9.1.2 J-J coupling
9.2 Magnetic moments
10. The periodic table
10.1 Ground state
10.1.1 Hund´s rules
11. Optical selection rules
11.1 Multipole radiation
11.2 Atoms in static electric fields
11.2.1 The quadratic Stark effect
11.2.2 The linear Stark effect
12. Spectral linewidth
13. The chemical bond
13.1 The hydrogen ion H2+
13.2 The neutral hydrogen molecule
13.3 Molecular excitations
13.3.1 Electronic, vibrational and rotational excitations
13.3.2 Combined excitations: the Frank-Condon principle
14. Introduction to nuclear pysics
14.1 Isobar, Isotone and Isotope
14.2 Mass defect
14.3 the droplet modell of nuclear physics
14.4 Mass spectrometry

Learning Outcome

After the successful obsolvation of the modul, students know the principles of atomic physics and the applications and are able to apply them to solve given problems. Students understand the methods and concepts of non-relativistic quantum physics and the limitations and can apply them. Students know the principles of atomic electron transitions and the relevance of symmetries e.g. parity symmetry. After the successful particapation in this modul students know the concepts to quantummechnically describe ground states and excitations in molecular physics und apply this knowledge  to two atomic molecules. Students can repeat the basics of nuclear physics und understand the alpha and beta decay as well as nuclear fission.

Preconditions

PH0001, PH0002, PH0003, MA9201, MA9202, MA9203, MA9204

for students studying bachelor of science education mathematics / physics: PH0001, PH0002, PH0003, MA1003, MA1004, MA1103, MA1104

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

Learning and Teaching Methods

Lecture: Teaching with experiments as demonstration

Problem class: Teaching with exercises

Tutorials: Solving of problem questions, discussion and explanations concerning the material covered in the lectures

Media

Presentation on the blackboard as well as slides

Experiments are used for demonstration purposes (descriptions available for download)

Videos (partly available for download)

Script available for download

Weekly problems with solutions available for download

Literature

H. Haken, H.C. Wolf; Atom- und Quantenphysik, Springer Verlag, 8. Auflage
T. Mayer-Kuckuck; Atomphysik, Teubner Verlag
W. Demtröder; Atome, Molküle und Festkörper, Springer Verlag
Marmier; Kernphysik I
T. Mayer-Kuckuck; Kernphysik, Teubner Verlag

Module Exam

Description of exams and course work

The learning outcome is tested in a written exam. Participation in tutorials is strongly recommended.

Exam Repetition

There is a possibility to take the exam at the end of the semester.

Current exam dates

Currently TUMonline lists the following exam dates. In addition to the general information above please refer to the current information given during the course.

Title
TimeLocationInfoRegistration
Prüfung zu Experimentalphysik 4
Di, 11.10.2016, 11:00 bis 12:30 Physik I: 2501
bis 19.9.2016 (Abmeldung bis 4.10.2016)

Condensed Matter

When atoms interact things can get interesting. Fundamental research on the underlying properties of materials and nanostructures and exploration of the potential they provide for applications.

Nuclei, Particles, Astrophysics

A journey of discovery to understanding our world at the subatomic scale, from the nuclei inside atoms down to the most elementary building blocks of matter. Are you ready for the adventure?

Biophysics

Biological systems, from proteins to living cells and organisms, obey physical principles. Our research groups in biophysics shape one of Germany's largest scientific clusters in this area.