Spacecraft Design
Module MW2132
This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.
Module version of SS 2014
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | ||
---|---|---|
SS 2020 | SS 2014 | WS 2013/4 |
Basic Information
MW2132 is a semester module in German language at Master’s level which is offered in winter semester.
This Module is included in the following catalogues within the study programs in physics.
- Catalogue of non-physics elective courses
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 45 h | 5 CP |
Content, Learning Outcome and Preconditions
Content
This survey lecture introduces aerospace design processes and technologies in the following lecture topics:
• Design processes and introduction to spacecraft, spacecraft systems and their design,
• Payloads and payload systems, science payloads and their sensors and experiments, surface systems, communication payloads
• Data handling and communication, communication structures, link budgets, environmental factors, telemetry and command, channel coding, error correction, modulations, frequencies
• Energy sources, power supply, solar cells, energy storage, batteries, fuel cells, solar dynamic systems
• Thermal control, radiation balance, thermal modeling, thermal control features
• Sensors and actuators for spacecraft attitude control and navigation
• Mechanical systems, mechanisms, structures
• Subsystem component and payload verification processes, interfaces, safety, function and environmental tests, verification and validation.
• System integration and test, functional and qualification tests, environmental compatibility test, model validation, test processes
• system operations and disposal
• Design processes and introduction to spacecraft, spacecraft systems and their design,
• Payloads and payload systems, science payloads and their sensors and experiments, surface systems, communication payloads
• Data handling and communication, communication structures, link budgets, environmental factors, telemetry and command, channel coding, error correction, modulations, frequencies
• Energy sources, power supply, solar cells, energy storage, batteries, fuel cells, solar dynamic systems
• Thermal control, radiation balance, thermal modeling, thermal control features
• Sensors and actuators for spacecraft attitude control and navigation
• Mechanical systems, mechanisms, structures
• Subsystem component and payload verification processes, interfaces, safety, function and environmental tests, verification and validation.
• System integration and test, functional and qualification tests, environmental compatibility test, model validation, test processes
• system operations and disposal
Learning Outcome
Students will be able to understand the complex interactions between the spaceflight environment, spacecraft systems and spaceflight missions, can analyze relevant requirements and find first order solutions for mission planning purposes. Students will be able to analyze spaceflight systems and perform basic optimizations. Students will be able to understand the basic interactions between and design drivers for spaceflight systems and available technological options. They have basic knowledge of required functions, typical design processes, design evaluations and possible implementations.
Preconditions
BS lecture "Introduction to Spaceflight Technology" (TUM LRT Professor U. Walter, Wiley-VCH, ISBN 3-527-40685-9), Introductory book such as John Sellers "Understanding Space", or equivalent BS lecture. Undergraduate knowledge in math and physics, completed BS in engineering.
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VO | 2 | Spacecraft Design |
eLearning |
||
UE | 1 | Tutorial Spacecraft Design |
eLearning |
Learning and Teaching Methods
class lecture
The technical contents will be presented theoretically in the lecture together with hands-on examples from implemented systems and on-going projects. The accompanying tutorial will reinforce important basic aspects with an emphasis on practical implementation and detailed analyses. The students will learn to perform first assessments and order of magnitude design calculations for system designs and layout. The tutorial will provide additional examples and information to current topics in spacecraft technology. Additional independent research, problem solving and literature is expected and will be part of the exams.
The technical contents will be presented theoretically in the lecture together with hands-on examples from implemented systems and on-going projects. The accompanying tutorial will reinforce important basic aspects with an emphasis on practical implementation and detailed analyses. The students will learn to perform first assessments and order of magnitude design calculations for system designs and layout. The tutorial will provide additional examples and information to current topics in spacecraft technology. Additional independent research, problem solving and literature is expected and will be part of the exams.
Media
In der Vorlesung werden die Lehrinhalte anhand von Vortrag, Präsentation und Tafelanschrieb vermittelt. Unterstützend werden kurze Filme und Anschauungsobjekte gezeigt. Vortragsmaterial steht elektronisch zur Verfügung und ersetzt ein Skript.
Literature
1. Handbuch der Raumfahrttechnik, 4. Ausgabe, W. Ley, K.Wittmann, W. Hallmann (Herausgeber), Hanser Verlag, 2011, ISBN 978-3-446-41185-2, ca. € 149,-
2. alternatively in Englisch: "Handbook of Space Technology (Library of Flight)" [Englisch], Wilfried Ley, Klaus Wittmann, Willi Hallmann, ca. €105.
3. Space Mission Engineering: The New SMAD [Englisch],
James Richard Wertz, ca. €105, or
4. V.L. Pisacane, R.C.Moore (eds.) "Fundamentals of Space Systems".
For basic background:
1. John Sellers "Understanding Space"
2. U.Walter "Astronautics"
2. alternatively in Englisch: "Handbook of Space Technology (Library of Flight)" [Englisch], Wilfried Ley, Klaus Wittmann, Willi Hallmann, ca. €105.
3. Space Mission Engineering: The New SMAD [Englisch],
James Richard Wertz, ca. €105, or
4. V.L. Pisacane, R.C.Moore (eds.) "Fundamentals of Space Systems".
For basic background:
1. John Sellers "Understanding Space"
2. U.Walter "Astronautics"
Module Exam
Description of exams and course work
In einer 120-minütigen, schriftlichen Prüfung sind die vermittelten Inhalte auf verschiedene Problemstellungen aus Vorlesung und Übung anzuwenden. Die schriftliche Prüfung besteht aus ca. 10 bis 30 Einzelproblemen, die den gesamten Vorlesungsinhalt abdecken. Es sind sowohl Kurzfragen, Verständnisfragen, als auch quantitative ingenieurwissenschaftliche Problemlösungen zu ungefähr gleichen Anteilen enthalten. Geprüft wird vor allem das Verständnis der raumfahrttechnischen Ingenieurlösungen und die Anwendung der gängigen Auslegungsmethoden. Studierende müssen unter Beweis stellen, dass sie in der Lage sind, die in der Raumfahrttechnik auftretenden Einflussfaktoren und deren komplexe Zusammenhänge zu verstehen, und die daraus auf die Raumfahrzeugauslegung und die Mission resultierenden Anforderungen erfassen und anhand von Abschätzungen machbare Lösungen finden können. Für die Bearbeitung der Prüfung wird den Studenten eine Formelsammlung bereitgestellt. Außer einem nichtprogrammierbaren Taschenrechner sind sonst keine weiteren Hilfsmittel erlaubt.
Aktueller Hinweis angesichts des eingeschränkten Präsenzbetriebs auf Grund der CoViD19-Pandemie: Sofern die Rahmenbedingungen (Hygiene-, Abstandsregeln etc.) für eine Präsenzprüfung nicht vorliegen, kann gemäß §13a APSO die geplante Prüfungsform auf eine online-gestützte schriftliche oder mündliche Fernprüfung umgestellt werden. Die Entscheidung über diesen Wechsel wird möglichst zeitnah, spätestens jedoch 14 Tage vor dem Prüfungstermin durch die Prüfungsperson nach Abstimmung mit dem zuständigen Prüfungsausschuss bekannt gegeben.
Aktueller Hinweis angesichts des eingeschränkten Präsenzbetriebs auf Grund der CoViD19-Pandemie: Sofern die Rahmenbedingungen (Hygiene-, Abstandsregeln etc.) für eine Präsenzprüfung nicht vorliegen, kann gemäß §13a APSO die geplante Prüfungsform auf eine online-gestützte schriftliche oder mündliche Fernprüfung umgestellt werden. Die Entscheidung über diesen Wechsel wird möglichst zeitnah, spätestens jedoch 14 Tage vor dem Prüfungstermin durch die Prüfungsperson nach Abstimmung mit dem zuständigen Prüfungsausschuss bekannt gegeben.
Exam Repetition
There is a possibility to take the exam in the following semester.