Spacecraft Technology

Modul MW1983

Dieses Modul wird durch Lehrstuhl für Raumfahrttechnik (Prof. Walter) bereitgestellt.

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Basisdaten

MW1983 ist ein Jahresmodul in Englisch auf Master-Niveau das in jedem Semester angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Allgemeiner Katalog der nichtphysikalischen Wahlfächer
GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
240 h 90 h 8 CP

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

The lectures of the summer semester provide knowledge of the fundamentals of Rocketry: Rocket Equation Rocket Staging Rocket Propulsion (chemical and electrical) Launcher Systems Space Environment Rocket Ascent Astrodynamics Trajectories Orbit Transfers The lectures of the winter semester provide knowledge of the fundamentals of space mission and spacecraft design: Mission Design (requirements, trade studies) Mission Geometry & Orbit Selection Orbit Perturbations Space Environment Satellite Payloads (typical) Structure & Mechanisms Attitude Determination and Control System Propulsion System Communication System Power System Thermal Control System

Lernergebnisse

After the successful conclusion of the first part of the module (summer term) , the students will be able to apply the basic physics of rocketry and propulsion to carry out a first order desing of a launcher system with respect to the design budgets of mass, power and volume. The students are able to analyse the complexity and the limitations of launching space craft systems and payloads into orbit. Furthermore, the students are able to apply the basic theory of astronautics, especially that of orbital trajectories and transfer maneuvers, with respect to the space craft's propulsion efficiency and the mission time. In general, the students are able to evaluate typical baseline launcher concepts and mission concepts with respect to the typical trade-offs in rocketry, namely mass and power. After the successful conclusion of the second part of the module (winter term) the students will have learned all relevant theory and engeneering tools for analysing the major elements of a typical space mission with special emphasis on the space element, namely the spacecraft itself. The students will be able to understand the complex interactions between the spaceflight environment, spacecraft sub-systems and mission needs, can analyze relevant requirements and find first order solutions for mission planning purposes. Students will be able to evaluate spacecraft systems and perform basic optimizations with respect to the typical trade-offs comprising power, mass, data rate, lifetime, complexity and reliability. The students will be able to evaluate the basic interactions between the design drivers for spacecraft systems and to implement them in the typical design processes.

Voraussetzungen

None

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)Termine
VO 3 Spacecraft Technology 2 Montag, 14:00–15:30

Lern- und Lehrmethoden

In the lecture, the topics are taught with the help of presentations and black board sketches. The accompanying tutorials repeat and engross the crucial topics. With the help of rough calculations and rule of thumb methods, the studens lern how to do first order system evaluations.

Medienformen

lecture, presentation, powerpoint assistance, hand-outs, black board

Literatur

Lecture notes; U.Walter, Astronautics, Wiley-VCH, ISBN 3-527-40685-9; Further literature survey is given in the hand-out

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

The module Spacecraft Technology comprises two thematically related subject areas which are based upon each other, namely the theory and physics of rocketry and astronautics (summer term) and the engineering and desing of the spacecraft system and its mission. The evaluating and analytical command of both expertise clusters is a fundamental prerequisite for the professional qualification of a space craft engineer. This fact requires the independent and successful verification of the learning outcome of both competence bundles. An academically educated engineer in the field of rocketry, astronautics and spacecraft desing has to proof knowledge in the field of the physical and theoretical rocket science on the one side and the engineering and desing part of the spacecraft itself on the other side. Both aspects are indispensable for the professional competence of the prospective graduate. Besides the advantage to split the exam burden of a two-semester module into two seperate, timely staggered exams (at the end of the 2nd semester and at the end of the 3rd semester), this assesment approach enables effectually the learning achievement of both study clusters. Both parts have to be passed individually. Only this test scheme for the module "Spacecraft Technology" allows the documentation of the achievement of the entire course objectives. Each of the two exams comprises typically 20 tasks - short questions as well as calculation problems with a partitioning of about 50% and 50%, respectively, which have to be answered and solved pressed for time. To work on the exam, the students are provided with a formulary; besides a non-programmable calculator, no further auxiliary material is allowed.

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird im Folgesemester angeboten.

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.