Mehrkörpersimulation
Multibody Simulation

Modul MW0866

Dieses Modul wird durch Lehrstuhl für Angewandte Mechanik (Prof. Rixen) bereitgestellt.

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Modulversion vom SS 2017 (aktuell)

Von dieser Modulbeschreibung gibt es historische Versionen. Eine Modulbeschreibung ist immer so lange gültig, bis sie von einer neuen abgelöst wird.

verfügbare Modulversionen
SS 2017SS 2014

Basisdaten

MW0866 ist ein Semestermodul in Englisch auf Master-Niveau das im Sommersemester angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Allgemeiner Katalog der nichtphysikalischen Wahlfächer
GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
90 h 60 h 3 CP

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

Mehrkörpersysteme beschreiben Systeme aus verschiedenen, massebehafteten starren oder elastischen Körpern, die untereinander an Kontaktstellen gekoppelt sind. Die Verbindungen können dabei über Kraftgesetze (masselose Federn und Dämpfer, Stellglieder, Kontakt) erfolgen oder rein kinematisch durch Gelenke realisiert sein. Mehrkörpersimulationsprogramme finden heute in verschiedensten Branchen breite Anwendung, wie z.B. in der Luft- und Raumfahrttechnik, bei der Simulation von Straßen- und Schienenfahrzeugen aber auch bei der detaillierten Schwingungsberechnung von Antriebssträngen in PKWs. Eine Mehrkörpersimulation liefert unter Vorgabe von Anfangs- und Randbedingungen die Bewegungsabläufe und die dabei an den Körpern wirkenden Kräfte und Momente. Die Einbettung der Finite-Elemente-Methode (FEM) in die Berechnungsmethode ermöglicht schließlich die gleichzeitge Simulation von starren und flexiblen Körpern (unter Berücksichtigung der Wechselwirkungen). Themen:
1. Dynamik von Starrkörpern (Newton-Euler Gleichungen, Lagrange Gleichungen 2. Art, Hamiltonsches Prinzip, ...)
2. Relativkinematik im Dreidimensionalen (räumliche Drehungen, ...)
3. Zusammenbau zum Mehrkörpersystem (Kopplungskräfte, Zwangsbedingungen, ...)
4. Berücksichtigung flexibler Körper
5. Zeitintegration (Newmark-Methode, lineare/nichtlineare Systeme, Zwangsbedingungen,...)

Lernergebnisse

Nach der Teilnahme sind die Studierenden in der Lage, ein mechanisches System in Form eines klassischen Mehrkörpermodells zu beschreiben. Die Studierenden nutzen einen abstrakten modularen Formalismus zur Herleitung der zugehörigen Bewegungsdifferentialgleichungen sowohl im ebenen als auch im dreidimensionalen Fall. Sie sind außerdem dazu in der Lage mit der Finite Element Methode modellierte flexible Körper in das Mehrkörpersystem einzubetten. Neben dem Aufstellen von systembeschreibenden Gleichungen beherrschen die Studierenden verschiedene numerische Zeitintegrationsverfahren für lineare und nichtlineare Systeme mit Zwangsbedingungen.

Voraussetzungen

Aus Vorlesung Technische Dynamik: Abschnitte "Analytische Dynamik" und "Dynamik von Starrkörpern"

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)Termine
VO 2 Multi-body Simulation Mi, 09:00–11:00, MW 2050
Mi, 09:00–11:00, MW 2050

Lern- und Lehrmethoden

In der Vorlesung werden mathematische Zusammenhänge und Herleitungen mittels Präsentationen (Tablet-PC) erarbeitet und erläutert. Die Vorlesungsfolien und das ergänzende Skript dienen den Studierenden als Unterlagen während der Vorlesung und zum Nachbereiten der Inhalte. Um ein tiefgreifendes Verständnis der Hintergründe dreidimensionaler Mehrkörperdynamik unter Zwangsbedingungen sicherzustellen, werden komplexe Zusammenhänge Schritt für Schritt am Tablet-PC hergeleitet und deren Bedeutung im Rahmen der Mehrkörpersimulation diskutiert. Durch einfache Beispielsysteme wird die praktische Umsetzung der Methoden rechnerisch am Tablet-PC demonstriert. Passend zu den jeweiligen Inhalten werden nach Möglichkeit physische Lehrmodelle zur Veranschaulichung räumlicher Drehungen sowie kinematischer Zusammenhänge präsentiert.

Medienformen

Präsentation (Tablet-PC), Vorlesungsfolien, Skript, Matlab-Beispiele, Animationen/Visualisierungen, Fallbeispiele

Literatur

Vor- und Nachbereitung mit Hilfe der Vorlesungsfolien, des Skripts und der Fall-/Matlab-Beispiele. Gängige weiterführende Literatur ist dem Skript zu entnehmen.

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

Im Anschluss an die Vorlesungszeit findet abhängig von der Teilnehmerzahl eine schriftliche Klausur (Bearbeitungsdauer 60 min) oder mündliche Prüfung (Einzelgespräch, Bearbeitungsdauer 30 min) statt. Die Studierenden sollen dabei nachweisen, dass sie die Methoden zur Beschreibung und Simulation eines mechanischen Mehrkörpersystems beherrschen. Besonderes Augenmerk wird dabei auf das Verständnis der zugrundeliegenden Zusammenhänge und Wirkprinzipien gelegt. Anhand von Fallbeispielen wird darüber hinaus überprüft, ob die gelernten Methoden auch angewendet werden können.

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird im Folgesemester angeboten.

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.