Financial Econometrics (FIM)
Module MA9976
This Module is offered by Department of Mathematics.
This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective
sections.
Module version of SS 2014
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
MA9976 is a semester module
in English language
at Master’s level
which is offered in summer semester.
This Module is included in the following catalogues within the study programs in physics.
- Catalogue of non-physics elective courses
Total workload | Contact hours | Credits (ECTS) |
120 h |
45 h |
4 CP |
Content
This course is an intensive introduction to various econometric concepts like sampling, estimation, hypotheses testing, and (generalized) linear regression used in applied financial research. The emphasis will be on developing and applying regression-based techniques in both cross-sectional and time-series contexts. Their usefulness will also be examined in the light of current financial studies.
Learning Outcome
After successful completion of the module, students are able to analyze cross-sectional and time-series data with regression-based techniques. Furthermore, students can develop and calibrate econometric models that can be used to test theories or to make forecasts. They understand the properties and limitations of these models and are able to assess how they fit different applications. Students will be able to use a programming software like Matlab or R to implement and evaluate the models.
Preconditions
none
Courses and Schedule
Learning and Teaching Methods
The module consists of the lecture supplemented by an exercise session. The lecture material is presented with slide presentations and mathematical proofs are presented on the blackboard. Students are encouraged to study course references. During the exercise sessions, students work under instructor assistance on assignments for the implementation of econometric models using programming software like Matlab or R.
Media
Presentation slides, whiteboard, assignment sheets, programming software like Matlab or R
Literature
Econometric Analysis, Greene, W.H. (2008), 6th ed., New York: Prentice Hall.
Additional Reading: Market Risk Analysis: Quantitative Methods in Finance (Market Risk Analysis). Carol Alexander. Wiley; Har/Cdr edition 2008.
Description of exams and course work
The module examination is based on a written exam (90 minutes) with theoretical and practical components. Students have to show their theoretical understanding of a generalized linear regression model by answering questions on model set-up and assumptions, the generalized least squares estimation methodology, finite and asymptotic properties as well as hypothesis testing. In the practical section, students have to demonstrate their understanding of the methodology on an economically motivated application. By analyzing and interpreting results from a variety of candidate models, students are led to reach a decision about the most plausible model for the application at hand.